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Numerical models have reached the stage where our simulations are believed to be fairly accurate 
representations of  the real world, and recently the term ‘digital twin’ has been coined to describe such 
simulators. However it should be remembered that all simulations are models of  the real world not the real 
world itself. The underlying equations of  our simulators are the result of  good scientific understanding, which 
may itself  be partial. In addition we solve numerical approximations to these equations ,not the equations in 
a continuum, and parameterise many processes because of  discretisation or lack of  knowledge. The 
difference between the simulator and reality is often known as the model discrepancy. In addition there are 
usually unknown parameters (or other inputs) in the simulators which we need to estimate either from 
external (expert) knowledge or by fitting the simulators to data using some statistical methodology. We will 
refer to this problem as calibration (or inverse modelling). Thus our simulator output is always uncertain, in a 
number of  distinct ways and any form of  calibration not only needs to estimate the values of  the simulator 
inputs but also the associated uncertainty. Although the quality and quantity of  measurement continues to 
improve, data are also always uncertain. So the calibration problem involves estimating parameters in 
uncertain models with uncertain data. The simple way of  solving such a problem is maximum likelihood (or 
least squares) or Bayesian calibration. Unfortunately such methods are flawed as they do not take the 
discrepancy into account. The nearest point to the data on the model manifold is found, even though this 
may be a long way from the true solution. Even worse the uncertainty on the estimator reduces as the 
amount of  data increases, going to zero as the number of  data points goes to infinity, giving a completely 
false impression of  the true accuracy. It is possible to create a better methodology that includes the model 
discrepancy, for example see Kennedy and O’Hagan (2001), who model the real world as the sum of  the  
simulator and the discrepancy both of  which are modelled as Gaussian processes; one representing the 
simulator, and one representing the discrepancy. The Kennedy and O’Hagan formulation has proved very 
popular, but suffers from a huge drawback - the two Gaussian processes are not separately identifiable. This 
isn’t a problem for prediction, where we are only interested in the sum of  the two processes, but if  we want to 
gain understanding about the simulator and discrepancy we need to be able to distinguish them. A number 
of  solutions have been proposed, including using strong prior information and restricting the form that the 
discrepancy can take. We suggest a different approach known as history matching. In history matching rather 
than trying to find a point estimate for the simulator inputs (or equivalently their joint posterior distribution) 
we find those sets of  inputs that give simulator outputs so far from the data that we can rule them out as 
implausible. Once we have ruled out all the implausible input values what is left must include the ‘best’ value, 
if  such a value exists. As we will see, it is possible to rule out all possible input values in which case it is not 
possible to make the simulator and the data agree.  

History matching is based on an implausibility statistic which we can calculate for all values of  the simulator. 
Since most simulators are too computationally expensive to allow us to do this the first part of  the process is 
to build a Gaussian process emulator. We run the simulator in a carefully designed experiment to fill the input 
space. It is important to fill space as much as possible so that we can predict what the simulator would 
produce across the whole of  space. The Gaussian process emulator is a stochastic surrogate model that allows 
us to predict the output of  the simulator at any point with its expectation but also gives the uncertainty at any 
point arising from the stochastic interpolation. With the emulator we can now predict the simulator for any 
set of  input values and so we can also calculate the implausibly. Note at this point in the analysis we should 
find out which of  the input values actually change the simulator outputs and only include those that are 



important in the analysis. Once we have built the Gaussian process emulator on the reduced input space we 
can calculate the implausibility. This is defined by 

!  

where !  is the data value, !  is the emulator for !  evaluated at the inputs ! , !  is the expectation 
operator, !  is the variance of  the emulator at the inputs ! , !  is the variance of  the data and !  is 
the simulator discrepancy expressed as a variance.  

The implausibility is simply a scaled distance between the estimated simulator value from the emulator and 
the data. Let us consider each of  the terms of  the denominator in turn. The first term is simple, it is the 
uncertainty in our emulator. This will vary with the values of  the inputs but is easily calculated from our 
emulator. Large values of  this term imply a poor emulator in those regions of  space and the implausibility 
will be small, thus we cannot rule them out, even if  the numerator is large. The other two terms in the 
denominator do not vary with the inputs but are important. The uncertainty on the data (! ) is clearly 
important. If  we have poor data we will be less confident in rejecting simulator inputs than if  our data is of  
very high quality. We will discuss some issues with biological data and how these this term below. The third 
term is the most controversial. This gives the additional uncertainty that comes from the discrepancy between 
the simulator and the real world. We usually think of  discrepancy in terms of  a bias whereas here we are 
describing it as a variance. It may be better to think of  this as a mean square error rather than a variance so 
in effect it is the bias squared. History matching doesn’t estimate the discrepancy as the Kennedy and 
O’Hagan method does (and thus avoids the identifiably problem), we need to elicit it from experts.  

Given the emulator and values for ! and ! we can now calculate the implausibility across the domain of  
the inputs. We deem implausible any set of  inputs for which the implausibility is greater than 3. This leaves a 
region known as NROY (Not Ruled Out Yet). Within this NROY space we now do another space filling 
design and rebuild the emulator. Because we have reduced the space over which we are building the emulator 
and removed extreme differences between the model and data often the corners of  the input domain this new 
emulator has reduced uncertainty compared to the original one. We now recalculate the implausibility and 
reduce the current NROY to a new one. This process is carried out recursively; each step is referred to as a 
wave. 

The process of  history matching is terminated when a stopping criterion is reached. The stopping criteria are 
(1) that a new wave does not reduce NROY in a meaningful way; (2) that NROY has been reduced to a 
region so small that we do care to reduce it further; or (3) the NROY space goes to zero. If  we consider each 
of  these in turn. The first implies that we cannot improve the emulator any further, the dominant terms in 
the implausibility are now  ! and ! and further runs of  the simulator would not improve the calibration. 
At this point we need to either acce[pt that this is as good a calibration as we are going to get  or collect more 
data to reduce  ! . The second option occurs when we preset a limit on how good a calibration needs to be 
for the task or decision in hand. Once this limit is reached we stop the calibration. The third option is in 
many ways the most interesting. If  the NROY space goes to zero it means there are no values of  inputs that 
can make the simulator agree with the data within the specified tolerance. The simulator does not fit. This 
often happens when the discrepancy variance has been set to zero, a perfect nodal assumption. One way 
around this problem is to increase the discrepancy term until a non-empty NROY is produced. This 
discrepancy value is the amount of  discrepancy in the simulator you are prepared to accept to produce a 
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simulator that ‘fits’ the data. For this reason the discrepancy term is sometimes described as the tolerance to 
error. 

It should be noted that history matching does not give us a point estimate for inputs to the simulator. We get a 
region of  not implausible values. There is no guarantee that this region is simply connected and we have no 
information of  whether one value is less or more plausible than another. The method is purely geometric and 
makes no assumptions about probability distributions or likelihoods. If  a more Bayesian interpretation is 
required then it is possible to cast history matching as a version of  Approximate Bayesian Computation 
(ABC), but this isn’t necessary and standard history matching is a purely geometric process. 

Having considered what might be described as classical history matching let us consider the special 
characteristics of  biological data that might make us vary the methodology. We will initially concentrate on 
the data error term. History matching has been developed for applications mainly in oil reservoir modelling 
and climate. In both cases there is no concept of  a population of  oil reservoirs or climates. There is only one 
oil reservoir in a particular geographical location and we only have one planet with a climate, even in 
engineering applications all aero-engines are designed and built to be as identical as possible. With biological 
systems this is not the case. For example consider a cardiac model. We might want to calibrate this model so 
that it represents the whole adult population of  Britain. Alternatively we might want a simulator that is 
representative of  the female population. Or we may wish to concentrate our attention on a single individual 
and personalise the model. The entire population of  Britain will have more variability than the female 
population which in turn will have more variability than a single individual. But unlike a jet engine even the 
same measurements on the same patient will exhibit some variability in time. Therefore the variance !  
represents not only the measurement error but also the variability within the population we are considering. 
This variance can be decomposed into within groups variances and between group variances. For example 
we might decompose the variance into 

!  

we could then choose how far up the hierarchy of  variability we wish to. If  we are trying to fit our simulator 
to an individual (personalised medicine) we would only need to consider the last two terms - the 
measurement error !  and variability within the single patient ! . This will be smaller 
than the variance for whole population and hence the the NROY for individuals will be smaller than the 
corresponding NROY for populations. In fact it would be possible for some individuals to have empty NROY 
spaces while the population NROY is non-empty, i.e. it is not possible for the simulator to fit those individuals 
while it is possible to fit the population. 

One criticism of  history matching is that it does not give a point estimate, or posterior distribution, of  the 
inputs. It is possible to do history matching followed by a Kennedy and O’Hagan analysis on the reduced 
NROY space. Such an analysis would be much more efficient than doing the Kennedy and O’Hagan 
calibration on the whole space, identifiability problems would be reduced by limiting the domain to the 
relatively well behaved region defined by the NROY space.  I would argue that, at least for simulators of  
biological and medical processes, a range of  input values may be more useful than a single point estimate. We 
have discussed above the variability in the data collected from a single patient, not simply the measurement 
error that would also be present in engineering, but also natural variation between measurements, possibly 
due to unmeasured covariates. We know for environmental models that inputs calibrated for precipitation 
data and not the same as those calibrated for temperature and in biological systems we expect this effect to be 
even greater. Rather than expect there to be a single best simulator input, sometimes referred to as !  in the 
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literature, we should think more of  clouds of  acceptable sets of  inputs all of  which produce reasonable fits to 
the data. These clouds should not be confused with a posterior uncertainty distribution around a single best 
value. The members of  an NROY produced by history matching do not have a probabilistic interpretation. 
Although we can show that one point has a smaller or larger implausibility value this should not be 
interpreted as one set of  inputs being more likely to fit the data than another. 

In this paper I have presented an alternative to traditional statistical calibration where we try to find the ‘best’ 
set of  inputs. This is known as ‘history matching’ and consists of  rejecting those simulator inputs that are 
implausible given the data. In addition to explaining how history matching works we have described how the 
method may need to be extended to work better with biological systems. 

Kennedy, M., & O'Hagan, A. (2001). Bayesian calibration of  computer models. Journal of  the Royal Statistical 
Society Series B, 63(3), 425–464.


