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1. Overview 
Deep learning is increasingly used in medical imaging, improving many steps of the processing 
chain, from acquisition to segmentation and anomaly detection to outcome prediction. Yet 
significant challenges remain: (1) Image-based diagnosis depends on the spatial relationships 
between local patterns, something convolution and pooling often do not capture adequately; (2) 
data augmentation, the de facto method for learning 3D pose invariance, requires exponentially 
many points to achieve robust improvement; (3) Labeled medical images are much less 
abundant than unlabeled ones, especially for heterogenous pathological cases; and (4) Scanning 
technologies such as magnetic resonance imaging (MRI) can be slow and costly, generally 
without online learning abilities to focus on regions of clinical interest. To address these 
challenges, novel algorithmic and hardware approaches are needed for deep learning to reach 
its full potential in medical imaging.   

 
Figure 1 Brain tumor image classification with a Spiking Neural Network on Intel’s neuromorphic hardware 

 
We explore three representative lines of research and demonstrate the utility of our methods on 
a classification benchmark of brain cancer MRI data. First, we present a capsule network that 
explicitly learns a representation robust to rotation and affine transformation. This model 
requires less training data and outperforms both the original convolution baseline and a 
previous capsule network implementation. Second, we leverage the latest domain adaptation 
techniques to achieve a new state-of-the-art accuracy. Our experiments show that non-medical 
images can be used to improve model performance. Finally, we design a spiking neural network 
trained on the Intel Loihi neuromorphic chip (Fig. 1 shows an inference snapshot). This model 
consumes much lower power while achieving reasonable accuracy given model reduction. We 
posit that more research in this direction combining hardware and learning advancements will 
power future medical imaging (on-device AI, few-shot prediction, adaptive scanning). 
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2. Results 
We tested our methods on a representative medical imaging dataset [1]. This benchmark 
contains 3,064 MRI slices of 233 patients diagnosed with one of the three brain tumor types: 
meningioma (23%), glioma (47%), and pituitary tumor (30%). We compare our results with a 
convolution network baseline and a previous state-of-the-art capsule network implementation.  
 

Table 1 Comparing our three approaches with two previous models 

Classification Model  
Test 

Accuracy 

Sample Efficiency  
(Test accuracy with 
10% training data) 

Avg. Energy 
(Measured or 
estimated*) 

ResNet trained from scratch 83.7% 61.9% 329 W 
Previous CapsNet [1] 85.6% N/A N/A 
Our CapsNet 89.3% 75.3% 365 W 
Pre-trained ResNet 92.4% 64.7% 329 W 
SpikingNet on Intel Loihi chip 70.2% N/A 2-8* W 

 
Table 1 summarizes model performance differences in terms of test accuracy, sample efficiency, 
and energy consumption. We stratified the images both by patient and for a balanced tumor 
classification and used a conservative 30% split for the test set. Our domain adaptation 
approach, implemented with a pretrained residual network, achieved a new state-of-the-art 
accuracy of 92.4%. Among models trained from scratch, our capsule network had the highest 
classification accuracy. To assess sample efficiency, we measured model performance trained 
on a fraction of the data ranging from 10% to 50%. In these low data scenarios, the capsule 
network consistently outperformed other models by a large margin (over 10% with 10% 
training data). Finally, in terms of energy consumption during the inference phase, we measured 
average energy draw for the models on GPU (Nvidia V100) and estimated it for the spiking 
network on neuromorphic hardware based on previous experiments. The spiking network 
unsurprisingly had the lowest consumption with roughly 50 times less energy. 
 
3. Methods and Discussion 

Spatial representation learning with Capsule Networks 
Capsule networks [2] are a divergence from typical convolution neural networks which rely on 
pooling to move from simple features detected early in the network to higher level features. 
What we lose in pooling is spatial resolution. While other techniques such as dilated convolution 
attempt to assuage this loss, capsules focus on explicitly capturing spatial hierarchies between 
simple and complex patterns through dynamic routing. The advantage is some level of 
representational invariance to image transformations including pose, lighting or deformation. 
This advantage makes capsules a good fit for medical images with diffuse, diverse abnormalities 
as well as variances from both measuring devices and individual differences. 

We replicated the capsule network architecture [1] by Guo [3] and optimized the preprocessing 
and model parameters for the raw MRI tumor images rather than the derived tumor 
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segmentation masks. Furthermore, we utilized learning rate decay, larger batch sizes and longer 
training time. Ultimately our trained model marks a significant performance improvement on 
the raw MRI images. While the accuracy did not surpass the pertained ResNet model, it 
outperformed the ResNet model trained from scratch. The capsule model is also data efficient, 
with performance degrading less substantially as the amount of labeled data decreases (Fig. 2). 
 

 
Figure 2 Low data learning: classification accuracy as a function of the fraction of training examples 

 
Another advantage of capsule networks is explainability. By manipulating the vector output of 
the capsule layer and reconstructing the image with the jointly learned decoder, one can 
visualize what each capsule is learning. This is especially vital in clinical settings where 
transparency may improve both doctor and patient trust and has the potential to uncover   
previously unremarkable image-based biomarkers that are relevant for diagnosis and prognosis.  
 
Transfer learning  
Our best model in terms of classification accuracy is a 50-layer convolutional residual network, 
improving on the previous state-of-the-art by 6.8%. The training process, implemented using 
the FastAI framework, is as follows: We started with the pretrained weights for ImgeNet, and 
first trained only the top fully-connected layer while keeping the residual blocks frozen. At this 
stage, the model reached 87.1% test accuracy. We then unfroze all layers and assigned them 
differential starting learning rates, giving more freedom to the higher layers. A second round of 
training with cyclical learning rates boosted the final test accuracy to 92.4%.  

In an ablation experiment to quantify the value of pretrained weights, we trained the same 
model architecture from scratch. This baseline model achieved 83.7% test accuracy. This 
comparison points to an 8% boost from domain adaptation. Although ImageNet contains no 
medical images, the learned lower-level features were able to generalize to the brain scans. 
Recent efforts in building large-scale medical imaging databases will likely provide an even 
better base for transfer learning.  
 
Spiking network on neuromorphic device 
Despite the tremendous success of AI, we understand very little about the human intelligence 
algorithm. Unlike the point neuron model used in deep learning, real neurons are connected 
to thousands of excitatory synapses hypothesized to recognize multiple independent patterns. 
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Neuromorphic computing aims to get one step closer to how brain works with spiking signals 
and local learning rules.  Rather than employing a non-linear activation function, spiking 
neurons must reach an activation potential before generating an output spike to forward 
connections and resetting. Learning rules are assigned to synapses, defining how the weight, 
delay and tag are computed during learning as a function of the pre and post synaptic traces. 
Neuromorphic hardware is an asynchronous design architecture specifically for implementing 
spiking based neural networks.  

We have partnered with Intel to experiment with their recent research chip, Loihi [4], for 
potential medical imaging application. What currently sets Loihi apart from other 
neuromorphic platforms is the online learning capacity and system scalability. We 
implemented three spiking networks on and off chip using Nengo [5] and the Loihi SDK: (1) 
A single layer image classifier, trained on chip, which encodes every pixel’s intensity via a 
random poisson spike generation process. (2) A converted convolutional neural network which 
successfully ran on the chip simulator but resulted in the actual chip timing up. (3) A spiking 
fully connected network (Table 1) which dramatically reduces the total number of neurons 
and processing time by first preprocessing images using dimensionality decomposition. All 
three models are energy efficient. Loihi is still at early development, so we expect the model 
performance to improve with reduced software constraints.  

4. Conclusions 
We have demonstrated three different approaches to improve medical imaging analysis 
tackling data efficiency, transfer learning and on-device learning. We posit the application of 
neuromorphic computing coupled with new learning algorithms will stimulate advancements 
in imaging technologies. Today’s MRI scans are slow and often require patients to be still for 
extended periods. Acceleration and enhancement may be realized at several steps of the 
process: (1) Real-time adaptive scanning implemented to increase spatial and temporal 
resolution at automatically detected regions of interest. (2) Accelerated data acquisition by 
intelligent compressive sampling and reconstructive techniques to reduce number of slices and 
required TR/TE times per slice. (3) Faster algorithm implementation of the final image 
reconstruction. (4) Real-time, few-shot learning for image enhancement techniques including 
motion correction, anomaly detection and anatomical segmentation. 
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