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1. Background 
We live in the information age where the flow of knowledge, including medical advice and 
innovations, quickly reaches each of us. However, existing recommendations for disease 
prevention, diagnostics and treatment are population-based, or based on highly selected 
randomized controlled trials,  and only seldomly account for individual differences. For effective 
control of globally increasing morbidity and mortality due to cancer, the focus on early 
detection and intervention cannot be underestimated. The estimated spiraling costs of cancer 
treatment will challenge even the highest-income countries and underline the urgent need to 
develop preventive efforts. 
Knowledge of biological disease mechanisms along with existing individual data from national 
population-based health registries, biobanks and surveys can be tailored for personally designed 
actions safely, efficiently and quickly.  
Cervical cancer screening is an excellent model system for the development of personalised 
strategies for cancer prevention. It has a proven strong effect for decreasing cancer burden at 
the population level, and the Norwegian population-based screening program has produced 
large amounts of individual data that is accessible by centrally organized nationwide registries.  
 
2. Objectives 
The overarching aim of this paper is to develop methodology for improved screening outcome 
prediction:  i) modelling of the multi-stage morphological changes leading to cervical cancer; ii) 
predicting future disease states; iii) predicting cervical cancer screening adherence. 
3. Data  
The Cancer Registry of Norway has run a national cervical cancer screening program since 
October 1991, collecting all screening and diagnostic results. Though screening guidelines exist 
(e.g. a cytology smear every three years from age 25 to 69), screening is at the discretion of the 
individual woman. As a result, the number of screening records and the time between 
screenings vary considerably between women. Three types of exams are used in the screening 
program: cytology, histology and molecular tests detecting presence of high-risk types of human 
papillomavirus (HPV) DNA.   
Cervical cancer screening outcomes are dependent on features which are beyond the scope of 
medical exams. In particular, personal lifestyle can be predictive of women’s compliance with 
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cervical screening guidelines and exposure to the main causal agent, sexually transmitted HPV. 
21,563 women of ages between 18 and 45 years were randomly selected from the general female 
population in 2004 and 2011 and invited to fill out a questionnaire with information on 
education, marital status, smoking history, alcohol intake, sexual habits, contraceptive use, 
sexually transmitted diseases, and reproductive history. The questionnaire data were linked to 
the Norwegian Cervical Cancer Screening Program databases, obtaining for each person 
information on every cervical screening exam between 1992 and 2016.  
 
4. Models 
According to the natural history, cervical cancer is an infrequent end-stage of minor cellular 
abnormalities caused by an HPV infection. These abnormalities progress from minor changes, 
through more definitely premalignant changes, to localized invasive cancer. If left untreated 
this can lead to metastatic disease and ultimately death. Being able to detect cervical cancer in 
its early stages, or pre-cancers, followed by prompt, appropriate treatment is the key element 
which justifies nation-wide cancer screening programs. 
 
A necessary step towards personalised screening programs is the development of reliable 
predictive models that take into account both disease dynamics and individual patient data. 
 
We developed a continuous-time, time-inhomogeneous hidden Markov model reflecting 
cervical cancer carcinogenesis and the screening process. By leveraging 1.7 million individual’s 
multivariate time-series with almost 11 million medical exams collected over a 25-year period, 
we estimated transmission parameters and predictive probabilities for a high-risk/cancer state 
at the next screening.  
 

 
Figure 1 shows a continuous-time Markov model of cervical cancer development with 
consecutive states of normal, low-risk, high- risk, cancer and “death”. The solid lines represent 
possible transitions in the Markov chain while dashed lines represent instantaneous resets due 
to treatment  
 
A hierarchical Bayesian MTL approach, referred to as Bayesian Multitask with Structure 
Learning (BMSL) was used to combine life-style data collected through questionnaires to 
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Figure 1. Continuous-time Markov model of cervical cancer
development with consecutive states of normal, low-risk, high-
risk, cancer and “death”. The solid lines represent possible
transitions in the Markov chain while dashed lines represent
instantaneous resets due to treatment.

(to be discussed below) are necessary to handle such data,
putting our model in the more general class of Continuous-
Time Dynamic Bayesian Networks. We note that even though
the screening data is given at the month-level as a result of
the data obfuscation, we still model the underlying dynamics
in continuous-time. This is partly done for convenience in
handling the irregularly sampled data, but it is also more com-
putationally stable. Computing the likelihood of a discrete-
time HMM at the month level is numerically unstable due
to the need to raise the probability transition matrix to a
large power. Furthermore it can be argued that cervical cancer
progresses on a longer time scale than months (Moscicki
et al., 2006), thus it is a reasonable approximation to use
a continuous-time model with discrete-time data.

Finally, we also account for treatment. Since treatment is
a surgical removal of observed abnormal tissue we interpret
a treatment as a direct transition to the normal state. This
is clearly an approximation as it is possible that a treatment
does not remove all abnormalities. A more general approach
would be to introduce a probability distribution on the un-
derlying states an individual can enter after a treatment. A
graphical model of this Markov chain is shown in Fig. 1. The
next two subsections present the model in more technical
detail.

3.1 Markov model for cervical cancer

Suppose there are N women in the screening population. De-
note by S

i(t) the underlying state of woman i 2 {1, 2, ..., N}
at time t > 0. We assume that for each i, S

i(t) follows
a continuous-time, Markov jump process on state space
{N0, L1, H2, C3, D4}. To further simplify notation we take
the state space to be {0, 1, 2, 3, 4}, where the cervical cancer
risk states map on to their associated numeric values. We
denote this state space by S.

A general continuous-time, Markov jump process on a finite
state-space S can be characterized by an initial state probabil-
ity distribution ⇡ over S and a probability transition function
P (y, t|x, s), which gives the probability of the process being in
state y 2 S at time t > 0, given that the process was in state
x 2 S at time s < t. Denote by P (t|s) the matrix whose i, j

entry is P (j, t|i, s). According to the Kolmogorov equations,
the matrix P (t|s) is determined by an intensity matrix ⇤(t)
with i, j entry �ij(t). Specifically, given an intensity matrix
⇤(t) the probability transition matrix P (t|s) is the unique
solution to the matrix di↵erential equation

@

@t
P (t|s) = P (t|s) · ⇤(t), (1)

with initial condition P (s|s) = In, the identity matrix.
If ⇤(t) = ⇤ is constant in t, the solution to the di↵erential

equation is the matrix exponential

P (t|s) = e
(t�s)⇤

.

In this case the resulting Markov chain only depends on the
time di↵erence t � s and is said to be time-homogeneous.
Depending on the underlying Markov model, this matrix may
or may not have a closed form representation. Regardless,
e�cient numerical schemes exist to compute this matrix (Al-
Mohy and Higham, 2010). As such, a time-homogeneous as-
sumption is often made as a means of simplifying the analysis
and inference of the resulting Markov model.

However, cervical cancer is not a time-homogeneous pro-
cess. Certain strains of the human papillomavirus (HPV)
are known to be the primary causes of cervical cancer, and
certain conditions accelerate progression from HPV to cancer
(Schi↵man and Wentzensen, 2013; Vintermyr et al., 2018;
Lissouba et al., 2013). Exposure to HPV is typically through
sexual contact, thus risk of HPV infection is highly correlated
with age. Moreover, the dependence on age is non-monotonic,
as the exposure to HPV increases from late teens to mid
twenties and then decreases as women get older, with a
possible slight increase in risk in early middle-age. Figure 2
shows the empirical distribution of women’s ages at the time
of a positive HPV test along side the empirical distribution of
women’s ages at the time of a screening. Note that women are
typically only given an HPV test after an abnormal cytology
exam. Nonetheless it is clear that HPV infections are not
uniformly distributed across the screening population. The
discrepancy in distributions suggests that HPV incidence is
strongly correlated with age.

Because of the high correlation between age and HPV
exposure, we use age as a proxy for HPV exposure risk and
model the transition intensity matrix ⇤(t) as a function of age,
i.e. we model cervical cancer as a time-inhomogeneous Markov
jump process. Because the dependence on age may be non-
monotonic, we allowed for non-linearities in the functional
dependence on age.

A flexible and e�cient method is to model the transition
intensities �ij as piece-wise constant functions of a woman’s
age. Assume that woman i is observed at ages a

i
1, a

i
2, ..., a

i
ni

where ni is the number of exams for woman i. Recall that the
screening schedules for women are highly irregular. Thus the
time between observations for a single woman is not uniformly
spaced (i.e., ai

j+1 � a
i
j 6= a

i
k+1 � a

i
k for all j, k 2 {1, 2, ..., ni})

and the number of exams between women varies (i.e., ni 6= nj

for i 6= j). Let amin = mini,j{ai
j} and amax = maxi,j{ai

j}.
Then for all women i and all exams j we have amin 6 a

i
j 6

amax. We define a partition of the interval [amin, amax] by q+1
change-points, ⌧0, ⌧1, ⌧2, ..., ⌧q, satisfying ⌧0 = 0 and

amin = ⌧1 < ⌧2 < · · · < ⌧q�1 < ⌧q = amax.
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predict screening adherence. This mode leverages commonalities across related tasks, i.e. life 
style events, with the aim of improving individual task performance. A key modeling choice in 
designing MTL models is the structure of the tasks’ relatedness, which may not be known.  

 
5. Results 
Data engineering 
To create a rich temporal dataset, health registry data was fused with survey data. As an 
outcome we had a single time series per patient with N time series where N is the number of 
patients. To protect the privacy, health data were manipulated, by collapsing test times within 
a specific window into a reference date and dates within a sample were shifted.  
The impact of missing and erroneous data was assessed.  
 
Modelling  
We show that the HMM reflects the Norwegian screening program by comparing empirical 
survival curves for both registry data and data simulated from the proposed model. Calibration 
showed that using no historical data results in predictions very close to the population incidence 
rate and severely over and under estimated the true risk for patients that are at high risk.  By 
utilizing individual screening histories and covariate data, the model shows potential for 
improving strategies for cancer screening programs by personalizing recommended screening 
intervals. 
 
The BMSL model outperformed single task learning models in terms of predictive performance 
for screening adherence and performs at least as well as other MTL methods.  
 
We continue to improve current models by including HPV status as covariate data, information 
on HPV vaccination status, incorporate lifestyle survey data as covariate data, develop 
hierarchical and nonparametric Bayesian models, utilize Recurrent Neural Networks (e.g. 
LSTM) to perform sequence prediction on patient test results with survey data as input. 
 
6. Conclusions 
We demonstrate the feasibility of developing personalised algorithms for cervical cancer 
prevention. The models can be generalized to include more detailed individual-level covariates 
as well as new types of screening exams. The ultimate goal is to develop models for predicting 
patient states to improve cancer screening outcomes and move towards a paradigm of 
personalised cancer prevention which complements existing population-based approaches. 


