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1. Introduction 

Living Heart Human Model is a finite element model with realistic three dimensional 

geometries of four heart chambers, the overall heart responses are driven by 

sequentially coupled electrical conduction and structural contraction analyses, with 

blood flow modelled as a closed loop lumped parameter model [1]. It provides a virtual 

environment to help test medical devices or surgical treatments before they are utilized 

in human. It is critical to tune the model to a patient or disease state, however this is 

extremely difficult using traditional varying-one-parameter-a-time approach, as there 

are a large number of parameters with complex interactions between parameters, and 

large number of CPU time to perform each analysis.  Another popular type of model in 

cardiovascular research is the Lumped Parameter Network (LPN) model that can 

approximate the pressure-volume relationship and fluid flow properties. This type of 

model can be solved in real-time, but it requires some pre-knowledge for the cardiac 

driving functions, i.e., the time varying pressure and volume relationship of the active 

chambers [2].   

It will be highly beneficial if we could establish a model that can link physical 

parameters and cardiac driving function. Machine learning opens a new path to science 

and discovery by finding insights and strategies that we as humans may never be able to 

find out.   The objective of this study is to use Machine learning and LHHM to train a 

model to characterize the relationship between realistic physical parameters and time 

varying pressure and volume relationship for active chambers, and then use ML trained 

model to guide the LPN model to quickly tune the model to a particular patient or 

disease state.  

2. Method 

LHHM 

LHHM includes realistic geometry, material properties and boundary condition. The 

geometries of atria and ventricles are from a 50% healthy male, the material properties 

consider passive material during diastole and contractile materials during systole of the 

four active chambers, and boundary conditions include the outlet of each cardiac 

chambers connected to the inlet of the other, with peripheral elastance and resistances, 

capturing dynamics of pulmonary and systemic circulations. 

Of all the parameters in LHHM, the active tissue behaviour is what drives the contractile 

behaviour of the active chambers [3]:  
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where 𝑇𝑚𝑎𝑥 is the isometric tension at the largest sarcomere length and highest calcium 
concentration, 𝐶𝑎0 is the peak intracellular calcium concentration, and  
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𝑡𝑟 = 𝑚𝑙 + 𝑏 
𝑚, 𝑏 are constants that specify the shape of the linear relaxation duration and sarcomere 
length relaxation, and 𝑡0is the time to reach peak tension after the initiation of active 

tension.  In addition,      𝐸𝐶𝑎50 =
(𝐶𝑎0)𝑚𝑎𝑥

√exp[𝐵(𝑙−𝑙0)]−1
 , 𝑙 = 𝑙𝑅√2𝐸𝑓𝑓 + 1, where: 

 𝐸𝑓𝑓 = Lagrangian strain in the fiber direction, 

𝐵 is a constant that specifies the shape of the peak isometric tension-sarcomere length 
relation, 
𝑙0 is the sarcomere length that does not produce active stress, 
𝑙𝑅 is the sarcomere length with the stress-free condition,  
and (𝐶𝑎0)𝑚𝑎𝑥 is the maximum peak intracellular calcium concentration. 
Machine Learning 

The structure of the ML-FE surrogate model is a supervised learning regression 

problem. We use a tree ensemble learning approach whereby “xgboost” package in 

python programming language was used to predict the time varying pressure and 

volume curves based on material properties and time. “xgboost” stands for eXtreme 

Gradient Boostings, it is a machine learning technique for regression and classification, 

which produces a prediction model [4]. 

Latin hypercube design of experiments (DOE) method was used to sample features as 

follows: 0.0015m <𝑙0 <0.0028m, 0.075s< 𝑡0<0.25s, 0.65MPa< 𝑡𝑚𝑎𝑥<1.9MPa for 

both left and right ventricles. The number of LHHM simulation provides 77 training sets 

and 11 test sets.  After the model was trained using the training set, predicted time 

varying elastance was calculated for the test sets.  

LPN model 

The system level LPN circulatory model is developed in Dymola using Modelica standard 

libraries. This model is decomposed into several distinct components which compute 

output volume, pressure and flow, based on inputs of elastance, flow and pressure. 

Active chambers of atria and ventricles are modelled as elastance generators, input from 

the Machine Learning model.  Elastic compartment is used to model systemic arteries, 

veins and pulmonary circuit, it characterizes the relation between increase in volume 

and pressure. Resistor is modelled between arteries and veins, veins and right atrium, 

and pulmonary circuit and left atrium, it defines the relation between flow rate and 

pressure gradient. Valves, including aortic, mitral, pulmonary and tricuspid valves, are 

characterized by the direction where the flow is allowed and a resistor.  Previous efforts 

indicate that by using consistent elastance, resistance and compliance parameters, 

LHHM and Dymola model can predict highly similar pressure and volume for all 
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chambers. 

Optimization 

An optimization workflow is developed in Isight, a process automation and design 

optimization tool, show in Figure 1. The optimization parameters include the 6 material 

parameters of LHHM model, hemodynamic parameters of the LPN circulatory model, the 

objective function is to reach target volumes and pressures. Based on the material 

parameters, machine learning predicts active chamber elastance, which is then used to 

drive the LPN circulatory model to predict all chambers pressure and volume. Pointer2 

technique, a powerful exploration approach that combines multiple optimization 

approaches, is used because it is ideal for complicated unknown design space with 

potentially multiple optimums. 

 

Figure 1 Flowchart of the automated tuning process 

 

3. Results 

Machine Learning model is trained by the pressure and volume responses of 77 LHHM 

simulations of varying active material parameters, and this ML model is used to predict 

the pressure and volume response based on three LHHM simulations with randomly 

selected material parameters that were not used in the training set. The ML-predicted 

LV pressure and volume were in good agreement with LHHM simulation with average 

error of 6% in pressure and 2% in volume (Figure 2). Similarly, the errors in ML 

predicted RV pressure and volume are 10% and 1% respectively. 

Automated parameter tuning process was able to adjust the active material parameters 

and hemodynamic parameters to reach target responses of maximal LV/RV pressures, 

diastolic blood pressure and LV/RV ejection fractions (Table 1). 
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Figure 2 LHHM-calculated and ML-predicted LV pressure and volume for three 

instances based on random selection of active mechanical properties.  

 

Output 
variables 

target 
before 

optimization 
after optimization 

Max pressure in 
LV (mmHg) 

100-140 92 121 

Max pressure in 
RV (mmHg) 

15-30 22 30 

Diastolic Arterial 
Blood Pressure 

60-90 28 65 

LV Ejection 
fraction 

≥50% 40 50 

RV Ejection 
fraction 

≥40% 40 40 

Table 1. Objective function values 

4. Conclusion 

We developed a workflow to automated tune the material and hemodynamic 

parameters for the Living Heart Human model using machine learning and multiscale 

simulations, including three dimensional finite element simulation and LPN circulatory 

simulation.  We used ML to predict elastance for active chambers in matter of seconds, 

the results of ML model were in close agreement with FE models. LPN circulatory model 

with optimization allow explore the additional contribution of the hemodynamic 

parameters to the model behaviour. Future study will use similar method to tune LHHM 

into disease states. 
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