
Parallelising Image Registration and the HPC Porting
Journey

Tooley, P.1,2, Benemerito, I.1, Melis, A.1, Narracott, A.1, Marzo, A.1, Viceconti,
M.1, 3

1 Department of Mechanical Engineering and Insigneo Institute for in silico Medicine,
University of Sheffield, Sheffield, S1 3JD, United Kingdom

2 The Numerical Algorithms Group, Manchester, M1 3LD, United Kingdom
3 Department of Industrial Engineering, Alma Mater Studiorum, University of Bologna,

Bologna, 40126, Italy

Image registration is widely used in many areas of computational biomedicine, both as a
research tool and a component in workflows providing clinical decision support. There exists
a wide range of both open-source and commercial tools for performing image registration
based on a variety of different methods.[1] However, these tools are designed to be run
on a single machine, with the associated limitations of computational performance and
available memory of the system, placing a limit on the maximum size of images which can
be handled. A key application for image registration at the University of Sheffield is strain
measurement of bone samples using digital volume correlation (DVC).[2] This makes use of
tomographic imaging from synchrotron light sources, which can be many tens to hundreds
of gigabytes in size — too large to be handled at full resolution by these existing codes. The
solution is therefore to create a parallelised image registration code, capable of leveraging
HPC infrastructure to register images of such sizes using the memory and computational
capacity of multiple HPC nodes.

In this presentation we will give an overview of the process of developing a new scientific
code, in particular with a view to deployment on HPC infrastructure, using our newly de-
veloped image registration code “pFIRE” as an example. pFIRE (The Parallel Framework
for Image Registration) is based on an existing registration method developed at the Uni-
versity of Sheffield in the early 2000s.[3] This uses an optical flow based registration method,
and was chosen as the underlying algorithm for pFIRE as it is well proven in applications,
and allows use of pFIRE as a drop-in replacement for a previous serial code in existing
workflows.

pFIRE is implemented in modern C++ (C++14 standard), using the PETSc[4] parallel
toolkit to provide the necessary parallel linear algebra routines and MPI for computation
between parallel processes. The primary challenge in parallelising algorithms using MPI
is in choosing efficient data layout and computational strategies to minimize the time the
code spends waiting for communication to occur. We will discuss potential strategies to
achieve this using the pFIRE implementation as an example, showing how initial choices in
data layout can have major consequences for subsequent code performance. Another key
part of the development process is benchmarking and profiling the code to determine the



performance and scaling behaviour, as well as any areas of poor performance and potential
for improvement. We will highlight available tools and methods to achieve this, both open
source and commercial offerings.

Finally we will consider the need for testing to ensure correct behaviour. This can be
particularly difficult for scientific software as typically the problems being solved have no
analytic solution for direct comparison. We will discuss various approaches for effective
testing, with particular emphasis on the benefits of automated testing as a part of the
development cycle.

[1] Francisco Oliveira and Joao Tavares. “Medical image registration: A review”. In: Com-
puter methods in biomechanics and biomedical engineering 17 (Jan. 2014), pp. 73–93.

[2] Marco Palanca et al. “Local displacement and strain uncertainties in different bone
types by digital volume correlation of synchrotron microtomograms”. In: Journal of
Biomechanics 58 (2017), pp. 27–36.

[3] D.C. Barber et al. “Efficient computational fluid dynamics mesh generation by image
registration”. In: Medical Image Analysis 11.6 (2007), pp. 648–662.

[4] Satish Balay et al. PETSc Web page. http://www.mcs.anl.gov/petsc. 2019.

2


