Combining molecular simulation and machine learning
to INSPIRE improved cancer therapy.
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1. The INSPIRE project

Cancer is the second leading cause of death in the United States (
accounting for nearly 25% of all deaths). Targeted kinase inhibitors play
an increasingly prominent role in the treatment of cancer and account
for a significant fraction of the $37 billion U.S. market for oncology drugs
in the last decade. Unfortunately, the development of resistance limits the
amount of time patients derive benefits from their treatment. The
INSPIRE project is laying the foundations for the use of molecular
simulation and machine learning (ML) to guide precision cancer therapy,
in which therapy is tailored to provide maximum benefit to individual
patients based on genetic information about their particular cancer. It is
vital that such an approach is based on predictive methods as the vast
majority of clinically observed mutations are rare, rendersing
catalog-building alone insufficient.

2. Predictive modelling

In employing predictive, physical modelling techniques we have focussed
on two primary challenges: (1) generating realistic starting models of
proteins (and variants) for which no experimental structure exists; and (2)
estimating binding strength from a model of a given protein-ligand
complex. To build models of inhibitor/kinase complexes, we draw from
the many available structures in the PDB database as input for our
comparative modelling pipeline. Our pipeline models the kinase of
interest by analogy to related kinase structures, and positions the
inhibitor in the active site through reference to other inhibitors. This



initial model is then refined using the Rosetta modelling suite. This
approach has yielded accurate models in previous test cases [1], making
us confident to apply it at larger scale in these studies. Molecular
dynamics (MD) based free energy calculations represent a practical,
quantitative, generalizable approach to predicting the impact of clinically
observed mutations on kinase inhibitor affinity. In this project we have
developed and refined protocols based on both cheap end-point methods
(ESMACS) and more expensive and potentially accurate alchemical
methods (TIES and YANK) [2,3]. Key to refining our existing protocols is
careful uncertainty quantification, avoiding the common issue that the
calculated statistical error underestimates the true variation among
independent experiments. As part of the project we have also investigated
the utility of enhanced sampling methods for situations where mutations
may alter the binding mode of ligands.

3. Machine Learning

INSPIRE leverages the models and techniques developed in the
synergistic, “Exascale Deep Learning and Simulation Enabled Precision
Medicine for Cancer” (CANDLE) project supported by the US
Department of Energy and National Cancer Institute. Key to our
approach is the use of a wide range of data sources and guided data
collection from simulation and experiment in order to accurately span
the known space of drug-like molecules. This space is currently not fully
understood, and for that reason is difficult to span by common machine
learning models. Standard virtual screening techniques have shown the
difficulty of attempting to apply individual modelling to each and every
molecule within a set of filters. Active learning is an approach to data
sampling which weighs the model uncertainty with the computational
cost to continue training the model. Active learning is used to train a
surrogate molecular dynamics model, which can be run in seconds — a
fraction of the time it takes to run a standard MD simulation. Using this
surrogate model, it is possible to test previously intractable sets of
molecules. Generative neural networks are capable of producing novel
molecules with certain constraints and properties [4]. This approach
allows molecules to be generated based on desirable properties and
embedded in continuous representations to draw new molecules from a
distribution. Our approach combines the benefits of active learning with
generated molecular training data.

4. Combining MD and ML Workflows

The INSPIRE approach relies upon the creation of workflows which
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combine expensive but accurate free energy calculations with fast ML
models. While ultimately we intend to predict the affinity of compounds
to wide ranges of disease-relevant kinases and clinically identified kinase
mutants, we have initially focussed on a subgoal; prioritizing the use of
MD simulations to assign binding affinities to small molecule on a large
set of small molecule drug candidates. Given a vast set of candidate drugs,
what is the optimal ordering of simulating candidates to improve overall
predictive screening performance using limited computer resource?
Addressing this question is the basis of our prototype workflow (which
initially targets a single kinase - Abll), described below.

i 1. Generator | 1a. Bias

5. Active ‘ ‘ ol |
g 2. Docking ’—)‘ Energy
Learning _ ) _Calculation

Input Target

i 4, Model |

Figure 1 Schematic overview of the INSPIRE lead identification workflow.

1 & 2: The generation module samples from a known dataset (producing
candidates as SMILES strings), but we will scale this to sampling from a
variational autoencoder guided by a biasing filter. Bias is an optional
module which restricts the generation module based on a particular
subspace, dataset, or biochemical feature. Allowing explicit filtering using
functions available in RDKit or OpenEye. 3D compound coordinates are
generated from the SMILES, and docked into the pre-prepared protein
conformation. The docking score is the first (and cheapest) binding
strength estimate passed to the ML model.

3. The structure of the protein-ligand complex is prepared for simulation
using one of our chosen free energy computations, ranging from
ESMACS to the more expensive and rigorous TIES and YANK, which
provides trajectories and binding free energy estimates (with associated
uncertainties).

4. Model is a deep neural network which predicts the binding free energy
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of a ligand. Initially the only input is the featurized SMILES string,
though we will extend this to include topologies and trajectories.

5. The Active Learning module ingests the SMILES, free energy estimate
and Model output and returns information to the generator either in the
form of the next sample or a space to continue sampling.

Execution of a prototype workflow requires the coordination not only of
the overall workflow but multi-stage pipelines of molecular simulations.
To support the scalable, adaptive and automated calculation of the
binding free energies concurrently with ML method on HPC resources,
we are developing workflow automation tools based on the
RADICAL-Cybertools middleware building block approach [5]. This
allows us to to attain both workflow flexibility and performance.

The target supercomputer for the INSPIRE project is Summit (Oak Ridge
National Laboratory), currently the world’s fastest supercomputer. The
NVIDIA Volta GPUs employed allow single OpenMM runs to generate
700+ nanoseconds of trajectory per day. However, the novel architecture
of the system means tools that we have previously relied upon are
currently unavailable. Consequently, our workflow has been adapted to
make use of communication with a cluster running containers for
docking and ligand preparation.

5. Conclusions

The INSPIRE project is preparing the way for the use of physical
modelling methods in making clinical decisions in cancer therapy. Our
first step is the production of a computational architecture, incorporating
predictive modelling and ML, to guide the development of
next-generation inhibitors able to circumvent drug resistance.
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