
 1

The HemeLB Offloader

Nash, R.W.1, Bernabeu, M.O.2, Illingworth1, M., Sloan, T.M. 1
1EPCC, The University of Edinburgh.

2Centre for Medical Informatics, The University of Edinburgh

1. Introduction

This paper outlines an approach for enabling access to HPC applications as Software as a

Service (SaaS) on conventional high-end HPC hosts such as EPCC’s Cirrus and cloud

providers such as Microsoft’s Azure service. The focus for the approach is enabling access

to the HemeLB application with the Polnet biomedical workflow. The paper reports on an

implementation of this approach that allows Polnet workflows to run on the Cirrus and

LISA supercomputing services at EPCC and SURFsara respectively.

2. Context

 PolNet [1] is an open source software tool for the study of blood flow and biological

activity at the single cell level during vessel morphogenesis. It provides an image

processing and analysis workflow for entire in vivo vascular networks that provides

quantitative estimates of the endothelial cell polarity and haemodynamic forces due to

blood flow. The tool enables, for the first time, network-level statistical analysis of

polarity and flow for individual endothelial cells, enabling study of endothelial cell

polarisation and migration during vascular patterning, as demonstrated by recent

publications [2], [3]. See Figure 1 for an example of analysis.

This software currently runs within a Docker container, which can be easily run by our

biologist collaborators, who do not have to manage the burden of installing the many

dependencies required. The software is relatively easy to use, a GUI hiding the command-

line based interface of the components.

3. Aim

PolNet runs on a single workstation, which, for much of the analysis, is an appropriate

platform. However, estimating the forces due to the blood flow requires running a

computational fluid dynamics (CFD) simulation, which on a single workstation, can take

several days to complete. We use the HemeLB (https://github.com/UCL/hemelb)

application for this work, which can take full advantage of HPC systems. HemeLB scales

 2

up to thousands of nodes on leadership-class machines such as ARCHER or up to machine

size on a Tier-2 machine like Cirrus, thus reducing the wall clock time for a simulation to

tens of minutes. The goal is to offload the simulation execution part of PolNet to an HPC

system such as Cirrus at EPCC or Lisa at SURFsara, and, if practical later, to a dynamically

allocated HPC cluster on the Azure public cloud. The offload service will be accessed via a

simple RESTful API in order to hide the details of accessing the HPC cluster and allow us

to control access credentials to the systems.

4. Implementation – The HemeLB Offload Service – The Hoff

The service architecture implemented in Figure 2 to meet this aim focused on supporting

a PolNet client workflow to run HemelB simulations but it is sufficiently general to

support other applications and potentially other execution hosts. The service has

successfully enabled PolNet users to exploit supercomputing resources at EPCC in the UK

and SURFsara in The Netherlands.

Figure 2 Architecture

The web service exposes the following RESTful endpoints to clients.

endpoint method Description

/jobs GET Lists all jobs known by the

web service

/jobs POST Create a new job and

return its identifier

/jobs/<job_id>/files POST Upload one or more input

Web Server

/ Web

Interface

Flask

Cirrus

PBSPro / via

saga-python

Generic HPC

/ via saga-

python

User DB Job DB

 3

files for a job

/jobs/<job_id>/submit POST Submit a job for execution

/jobs/<job_id>/state GET Get the job’s current state

/jobs/<job_id>/retrieved GET Returns a flag indicating if

the job’s output files have

been retrieved from the

execution host

/jobs/<job_id>/files GET Return a list of output files

produced by the job

/jobs/<job_id>/filename GET Download a specific output

file

/jobs/<job_id> DELETE Kill the job if in a running

state, delete any resources

held by the job and any files

/services GET Return a list of known

execution hosts/services

/inputsets POST Create a set of related input

files, return and id for the

set

/inputsets/<id> POST Upload a file to an input set

/inputsets/<id>/hash GET Return a hash calculated

from the inputset files

/templates GET Return a list of job template

names

Jobs are specified by posting a job description as a JSON payload, following the definitions

provided within the SAGA specification. A client creates a new job by posting a payload

containing the job description. The job description contains details of the resource on

which to execute the application and information such as reservation details and

wallclock time. In response the web service creates a new job locally in the job database

with status “NEW” and returns the job’s identifier to the client. A staging area for the job

is created on the web server. The client may then use the returned job identifier to post

input files to the web service. Once file upload is complete, the client requests submission

of the job by sending a POST to the job identifier. In response the web service returns a

response of “SUBMITTED” and begins the workflow of creating an execution resource and

executing the job. A service thread creates a working directory on the execution host,

then stages over the input files and/or contents of an input set if specified. The job is then

submitted on the remote host.

A separate service thread within the web service periodically monitors the remote job

states of any jobs submitted via the web interface and updates the local job database

accordingly. When a job has reached a “final” state, e.g. “Done”, “Failed”, output files are

automatically retrieved from the execution resource to the webserver and any remote

 4

resources released. Output files can subsequently be downloaded by the client from the

web service via GET requests. The job and any output files / resources can be deleted by

issuing a DELETE request using the web server job identifier. This will cancel the job if it

is running, and free any resource and file space. The details of the job and its final state

(DELETED) will remain in the web server job database. To enforce fair usage, a limit is

applied to the number of active jobs which any user may have. Any job which is in a state

other than ‘DELETED’ is considered as active. Deleted jobs are not counted towards a

user’s limit.

5. Impact

Providing scientific analysis and/or simulation services via online interfaces is

commonplace in some fields and at an early stage more widely. These services come

under a variety of names, such as “science-as-aservice”, “science gateways”, “workflows”,

or simply “our services”. However these platforms are typically very heavyweight and

require users to fully commit to their way of doing things. Here we are attempting a

straightforward single use-case solution to solve real users’ immediate problem. Longer

term, however, there is no reason this API could not be accessed from within one of these

systems should it be desired. Cloud computing has started to make inroads into the

academic computing market in high-throughput application domains, such as genomics,

particle physics analysis, and image processing. However as most public cloud instances

do not include the high bandwidth, low latency networking needed for multi-node, tightly

coupled simulations, “traditional” HPC workloads (CFD, molecular dynamics,

weather/climate modelling, etc) have remained on institutional or national services. The

Azure nodes equipped with InfiniBand offer a unique opportunity to enable these

workloads, should we be able to obtain some credit for Microsoft’s services. Returning to

PolNet’s particular domain, understanding the roles of flow in vascular development is

important from a basic science point of view since the molecular regulation of

angiogenesis remains incompletely understood. Furthermore, the translation of these

results hold the key to the development of novel therapeutic approaches for vascular

normalisation in the context of e.g. retinopathies or cancer.

6. References

[1] M. O. Bernabeu, M. L. Jones, R. W. Nash, A. Pezzarossa, P. V. Coveney, H. Gerhardt, and

C. A. Franco, “PolNet: A Tool to Quantify Network-Level Cell Polarity and Blood Flow in

Vascular Remodeling,” Biophys. J., vol. 114, no. 9, pp. 2052–2058, May 2018.

[2] C. A. Franco, M. L. Jones, M. O. Bernabeu, I. Geudens, T. Mathivet, A. Rosa, F. M. Lopes,

A. P. Lima, A. Ragab, R. T. Collins, L.-K. Phng, P. V. Coveney, and H. Gerhardt, “Dynamic

Endothelial Cell Rearrangements Drive Developmental Vessel Regression,” PLoS Biol, vol.

13, no. 4, p. e1002125, Apr. 2015.

[3] C. A. Franco, M. L. Jones, M. O. Bernabeu, A.-C. Vion, P. Barbacena, J. Fan, T. Mathivet, C.

G. Fonseca, A. Ragab, T. P. Yamaguchi, P. V. Coveney, R. A. Lang, and H. Gerhardt, “Non-

canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular

remodelling,” eLife, vol. 5, p. 1024, Feb. 2016.

