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1. Introduction  

This paper outlines an approach for enabling access to HPC applications as Software as a 

Service (SaaS) on conventional high-end HPC hosts such as EPCC’s Cirrus and cloud 

providers such as Microsoft’s Azure service. The focus for the approach is enabling access 

to the HemeLB application with the Polnet biomedical workflow. The paper reports on an 

implementation of this approach that allows Polnet workflows to run on the Cirrus and 

LISA supercomputing services at EPCC and SURFsara respectively. 

2. Context 

 PolNet [1] is an open source software tool for the study of blood flow and biological 

activity at the single cell level during vessel morphogenesis. It provides an image 

processing and analysis workflow for entire in vivo vascular networks that provides 

quantitative estimates of the endothelial cell polarity and haemodynamic forces due to 

blood flow. The tool enables, for the first time, network-level statistical analysis of 

polarity and flow for individual endothelial cells, enabling study of endothelial cell 

polarisation and migration during vascular patterning, as demonstrated by recent 

publications [2], [3]. See Figure 1 for an example of analysis. 

 

This software currently runs within a Docker container, which can be easily run by our 

biologist collaborators, who do not have to manage the burden of installing the many 

dependencies required. The software is relatively easy to use, a GUI hiding the command-

line based interface of the components.  

3. Aim 

PolNet runs on a single workstation, which, for much of the analysis, is an appropriate 

platform. However, estimating the forces due to the blood flow requires running a 

computational fluid dynamics (CFD) simulation, which on a single workstation, can take 

several days to complete. We use the HemeLB (https://github.com/UCL/hemelb) 

application for this work, which can take full advantage of HPC systems. HemeLB scales 
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up to thousands of nodes on leadership-class machines such as ARCHER or up to machine 

size on a Tier-2 machine like Cirrus, thus reducing the wall clock time for a simulation to 

tens of minutes. The goal is to offload the simulation execution part of PolNet to an HPC 

system such as Cirrus at EPCC or Lisa at SURFsara, and, if practical later, to a dynamically 

allocated HPC cluster on the Azure public cloud. The offload service will be accessed via a 

simple RESTful API in order to hide the details of accessing the HPC cluster and allow us 

to control access credentials to the systems.  

4. Implementation – The HemeLB Offload Service – The Hoff 

The service architecture implemented in Figure 2 to meet this aim focused on supporting 

a PolNet client workflow to run HemelB simulations but it is sufficiently general to 

support other applications and potentially other execution hosts.  The service has 

successfully enabled PolNet users to exploit supercomputing resources at EPCC in the UK 

and SURFsara in The Netherlands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 Architecture  

The web service exposes the following RESTful endpoints to clients. 

endpoint method Description 

/jobs GET Lists all jobs known by the 

web service 

/jobs POST Create a new job and 

return its identifier 

/jobs/<job_id>/files POST Upload one or more input 
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files for a job 

/jobs/<job_id>/submit POST Submit a job for execution 

/jobs/<job_id>/state GET Get the job’s current state 

/jobs/<job_id>/retrieved GET Returns a flag indicating if 

the job’s output files have 

been retrieved from the 

execution host 

/jobs/<job_id>/files GET Return a list of output files 

produced by the job 

/jobs/<job_id>/filename GET Download a specific output 

file  

/jobs/<job_id> DELETE Kill the job if in a running 

state, delete any resources 

held by the job and any files 

/services GET Return a list of known 

execution hosts/services 

/inputsets POST Create a set of related input 

files, return and id for the 

set 

/inputsets/<id> POST Upload a file to an input set 

/inputsets/<id>/hash GET Return a hash calculated 

from the inputset files 

/templates GET Return a list of job template 

names 

Jobs are specified by posting a job description as a JSON payload, following the definitions 

provided within the SAGA specification. A client creates a new job by posting a payload 

containing the job description. The job description contains details of the resource on 

which to execute the application and information such as reservation details and 

wallclock time. In response the web service creates a new job locally in the job database 

with status “NEW” and returns the job’s identifier to the client. A staging area for the job 

is created on the web server. The client may then use the returned job identifier to post 

input files to the web service. Once file upload is complete, the client requests submission 

of the job by sending a POST to the job identifier. In response the web service returns a 

response of “SUBMITTED” and begins the workflow of creating an execution resource and 

executing the job.  A service thread creates a working directory on the execution host, 

then stages over the input files and/or contents of an input set if specified. The job is then 

submitted on the remote host. 

A separate service thread within the web service periodically monitors the remote job 

states of any jobs submitted via the web interface and updates the local job database 

accordingly. When a job has reached a “final” state, e.g. “Done”, “Failed”, output files are 

automatically retrieved from the execution resource to the webserver and any remote 



 4 

resources released. Output files can subsequently be downloaded by the client from the 

web service via GET requests. The job and any output files / resources can be deleted by 

issuing a DELETE request using the web server job identifier. This will cancel the job if it 

is running, and free any resource and file space. The details of the job and its final state 

(DELETED) will remain in the web server job database. To enforce fair usage, a limit is 

applied to the number of active jobs which any user may have. Any job which is in a state 

other than ‘DELETED’ is considered as active. Deleted jobs are not counted towards a 

user’s limit. 

5. Impact 

Providing scientific analysis and/or simulation services via online interfaces is 

commonplace in some fields and at an early stage more widely. These services come 

under a variety of names, such as “science-as-aservice”, “science gateways”, “workflows”, 

or simply “our services”. However these platforms are typically very heavyweight and 

require users to fully commit to their way of doing things. Here we are attempting a 

straightforward single use-case solution to solve real users’ immediate problem. Longer 

term, however, there is no reason this API could not be accessed from within one of these 

systems should it be desired. Cloud computing has started to make inroads into the 

academic computing market in high-throughput application domains, such as genomics, 

particle physics analysis, and image processing. However as most public cloud instances 

do not include the high bandwidth, low latency networking needed for multi-node, tightly 

coupled simulations, “traditional” HPC workloads (CFD, molecular dynamics, 

weather/climate modelling, etc) have remained on institutional or national services. The 

Azure nodes equipped with InfiniBand offer a unique opportunity to enable these 

workloads, should we be able to obtain some credit for Microsoft’s services. Returning to 

PolNet’s particular domain, understanding the roles of flow in vascular development is 

important from a basic science point of view since the molecular regulation of 

angiogenesis remains incompletely understood. Furthermore, the translation of these 

results hold the key to the development of novel therapeutic approaches for vascular 

normalisation in the context of e.g. retinopathies or cancer. 
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