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1.  Introduction 

The in-silico clinical trials for the treatment of acute ischemic stroke (INSIST) consortium is a 

multi-disciplinary, multi-sectorial undertaking aiming to advance the understanding and 

treatment of ischemic stroke through computational simulations and clinical trials. The work 

presented here is a part of this project which aims to model oxygen transport and metabolism 

in the entire human brain. This will form the backbone of the in-silico trials as this model, 

coupled with the multi-scale model of the blood flow in the human brain presented elsewhere 

in this conference
1

, will predict regions of hypoxia post-stroke, and hence will predict tissue 

death. This can then be validated against an available large database of stroke patients. 

 

Modelling the oxygen transport in the entire brain is not a trivial matter, in particular due to the 

multiple spatial scales and time scales over which oxygen is transported and metabolised. Prior 

efforts at modelling oxygen transport in the brain have primarily involved modelling small 

regions of the vasculature (in the order of millimetres) due to computational constraints e.g. [1]. 

It was then demonstrated how the mass transport equation can be up-scaled through the use of 

homogenization [2,4] - and that a few key parameters can be pre-computed from the micro-

scale which encapsulate the geometry and connectivities of the blood vessel networks. We here 

extend the homogenization procedure previously applied to the capillary bed [2,3] to deal with 

the multiple spatial-scales of the vasculature in the brain (from the tissue bed up to the pial 

vessels). We thus develop a multi-compartment, multi-scale coupled model of the oxygen 

transport in the entire human brain. The key parameters are computed from micro-scale 

simulations and are then used in an idealised one compartment simulation of oxygen transport 

in the arterioles. 

 

2.  Methods  

Theory – We extend the work of Shipley and Chapman [2] here by reiterating the 

homogenization procedure over multiple spatial scales. In brief, at each scale e.g. the 

penetrating vessel scale, the mass transport equation describes the flow of oxygen through the 

penetrating vessels. The vessels at the scale below are treated as a porous medium (in this 

example the capillary bed) and boundary conditions are imposed between the vessels and 

porous medium that relate to the coupling of blood flow (and hence bulk transport of oxygen) 

and the transport of oxygen into the tissue across the vessel walls. After non-dimensionalizing 

these equations, the scale separation of the problem is exploited, and the leading order 

problem is extracted [2,3,4]. This homogenization procedure is reiterated from the tissue scale 
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to the pial vessel scale. The result is a set of coupled partial differential equations (1) – (4): 
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Subscripts t, c, a, and v refer to tissue, capillaries, arterioles, and venules respectively. 𝑐(0) is the 

leading order concentration, 𝑆 the surface area of the given vessels in the compartment, 𝑉 the 

volume of the compartment, and 𝑝(0) is the leading order pressure in the given compartment. 

𝛾 is the wall transport coefficient (from the vessels to the tissue), 𝑫𝟐
𝒅𝒊𝒇

 is the macro-scale 

diffusion tensor for oxygen in the capillaries and tissue, and 𝑓(𝑐𝑡
(0)) is a non-linear metabolism 

term (Hill equation). Finally, 𝛽𝑎𝑐 is the blood flow coupling coefficient from the arteriole to 

capillary compartment, 𝛽𝑐𝑣 is the blood flow coupling coefficient from the capillary to the 

venule compartment, and 〈𝒖𝒊
(0)〉𝑖 is the Darcy velocity where 𝑖 refers to any of the four 

compartments (t, a, v, and c). 

 

This set of equations can be solved over the entire brain, resulting in a 4-compartment coupled 

model of oxygen transport and metabolism. The Darcy velocity and pressure are computed 

from the homogenized blood flow equations detailed elsewhere
2

. 

 

The main parameters that derive from the homogenization procedure - that encapsulate the 

micro-scale structure of the networks - must be pre-computed before simulating over the 

macro-scale. These are the surface-area-to-volume ratios of the capillary and arteriole network 

(
𝑆𝑐
𝑉𝑐
,
𝑆𝑎
𝑉𝑎
), the volume fractions of the capillary and arteriole network (

𝑉𝑐
𝑉𝑇
,
𝑉𝑎
𝑉𝑇
) – where 𝑉𝑇 is the 

total volume of the compartment, and the effective diffusion coefficient 𝑫𝟐
𝒅𝒊𝒇

. 

 

Simulation – We firstly run simulations on our micro-scale networks to extract the necessary 

parameters [3,5]. It is found that the diffusion tensor is isotropic and can be approximated as 

constant and equal to the original diffusion coefficient D. The surface-area-to-volume ratios of 

the arteriolar and capillary networks are calculated for steadily increasing cube sizes until the 

parameters converge. At this point, the parameters can be described as the effective parameters 

of the network, as they now encapsulate enough heterogeneities of the network that any further 

increase in cube size won’t influence the effective parameters. 
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We then simulate oxygen transport in a 2 mm x 2 mm x 2 mm voxel for the arteriolar 

compartment, solving the continuum model using the FEniCS open source computing 

platform. Equation (1) is implemented without the coupling term and with a small diffusion 

term to observe what effect an occlusion has on the steady state oxygen distribution, along with 

a constant tissue concentration. A Dirichlet boundary condition is imposed on the pial surface 

of the compartment relating to a concentration of 1 mm
3

 O2 /mm
3

, along with periodic 

boundary conditions on the 4 sides of the cube, and a no flow Neumann boundary condition at 

the grey/white matter interface. The diffusion coefficient is 1.8x10
-3

 mm
2

/s, the Darcy velocity 

vector is [0,0,0.18] mm/s (imposing a velocity down the cortical column from the pial surface to 

the white matter), the tissue concentration is assumed constant and equal to 0.335 mm
3

 O2 

/mm
3

, and the wall transport coefficient 𝛾𝑎 is 4.2 x 10
-4

 mm/s. 

 

The simulation is initialised with zero concentration throughout the voxel and the time taken to 

reach steady state is recorded. An occlusion is then introduced on the pial surface which results 

in a step change in velocity, with the velocity vector dropping to 10% of its original value, and 

the time to reach steady state is again observed. 

 

3.  Results and Discussion 

The mico-scale parameters of interested were generated for increasing cube sizes of networks. 

Their values are plotted, and the converged effective parameters are extracted (see Figure 1). 

For the capillaries, the value of the surface-area-to-volume ratio converges to ≈ 615 mm
2

/mm
3

 

and the volume fraction converges to 1.4% (not shown). For the arterioles, the values are ≈ 188 

mm
2

/mm
3

 for the surface-area-to-volume ratio, and 1.8% for the volume fraction (not shown). 

These compare well with values in the literature. 

 

 

Figure 1 a) Effective surface-area-to-volume ratio for the capillary network. b) Effective surface-area-to-

volume ratio for the arteriolar network. 

 

This converged value of the surface-area-to-volume ratio for the arteriolar network is then used 

in the continuum simulation of oxygen transport in the arteriolar compartment. The voxel 

used, and the results pre- and post-occlusion can be found in Figure 2. After initialisation, the 

a) b) 
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voxel takes approximately 20 seconds to reach a steady state oxygen concentration. After 

imposing the blockage and a step change in velocity (at t=25s), it takes approximately 65 

seconds for the cube to reach a similar steady state, giving us an indication of the time scales 

involved in oxygen transport through the cortex. 

 

 

Figure 2 a) The steady-state variation of concentration with depth through the voxel at t=20s. b) The 

steady-state variation of concentration with depth through the voxel at t=90s. c) A cut halfway through the 

voxel (in the x-z plane) showing the concentration distribution at t=20s. d) Similar to c) but at t=90s 

 

4. Conclusion 

A fully coupled mathematical model for oxygen transport across the disparate length scales of 

the human vasculature (from capillary bed to pial surface) has been developed. We have 

calculated the parameters that are required to model oxygen transport over large regions of the 

brain in the continuum scale and have applied the continuum model to a single (passive) 

arteriolar compartment, imposing a step change in velocity and observing the time-scales 

required to reach steady-state. Applying this fully coupled model to a realistic geometry of the 

human brain is currently in progress, which in turn will be validated against a large database of 

stroke patient data. 
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