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1. Introduction 

Clinical trials are expensive, and the risks posed to the participants are not fully known. Yet, 

participant numbers in clinical trials are often too small to conclude a statistically significant 

positive effect of the proposed intervention. A case in point are interventions targeting the 

reduction of hip fracture risk due to ageing in women. The socioeconomic relevance of this 

condition is well-known: for women over the age of 50, the remaining lifetime risk of suffering a 

hip fracture is equivalent to that of breast cancer; the cost of treating fragility fractures at the hip 

is over £2 billion annually in the UK. Yet, hip fracture incidence in the general population is very 

small (32 fractures per 10,000 person-years in British women over 50 [1]). This impedes reaching 

a statistically significant conclusion in a clinical trial with fracture as endpoint. In silico clinical 

trials (ISCTs) have been proposed as a computational tool to alleviate such challenges. Here, 

virtual patients are recruited in the trial increase the confidence in the study result. A virtual 

patient is a digitised data-set comprising biomedical information relevant to the disease/condition 

and treatment in question. An ISCT simulates a standard trial by subjecting virtual patients to 

untreated and treated conditions, where each condition is expressed by a mathematical model. 

Therefore, two ingredients are indispensable in any ISCT, irrespective of the intervention: a 

virtual patient definition and a mathematical model for the untreated condition. 

In this study, we focus on absolute risk of current hip fracture due to age in elderly British women 

as the untreated condition. A recent study [2] – revisited briefly below – determined a minimal 

data-set that can describe a virtual patient when considering this untreated condition. The present 

study focuses on the remaining key ingredient, i.e. the untreated condition model for the effect 

of ageing on these virtual patients. The aim of this study is to validate the predictions of the 

untreated condition model against epidemiological data in the literature, as a first-step towards 

realising an ISCT for interventions to reduce risk of fragility hip fractures. 
 

2. Methods 

Recently, a multiscale model [2] was shown to be able to classify current hip fracture status in a 

post-menopausal cohort of British women who were referred to secondary osteoporosis care in 

the UK (henceforth, Sheffield cohort; n = 49 hip fracture patients and n = 49 age-, weight- and 

height-paired control subjects) with 77.6% specificity and 81.6% sensitivity. This model accounted 

for patient-specific determinants from the whole-body scale – specifically, body mass (m) and 

body height (H) – and from the organ scale – specifically, proximal femur geometry and the 
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volumetric bone mineral density (vBMD) distribution within it. Whole-body scale determinants 

(characteristics of fall frequency and kinematics) were assumed identical across all subjects. The 

model predicted the quantity ARF0, defined as the absolute risk of hip fracture over a period less 

than a year, such that age-related changes could be neglected. Thus, henceforth a virtual patient 

for the untreated condition considered here is characterised by the above determinants (both 

patient-specific and non-patient-specific). 

The untreated condition model aims to create a virtual patient population by considering how 

virtual patient characteristics change between age-groups. However, not all changes need to be 

captured. The strength of the proximal femur depends on its geometry and the distribution of 

volumetric bone mineral density (vBMD) within it. As the elderly are skeletally mature, and 

because 84% of the variation in ARF0 in the Sheffield cohort was explained by the variation in 

bone strength alone [2], in this first-order untreated condition model, it is assumed that the 

distributions of bone geometry and fall frequency and kinematics are identical between any two 

of the 5-year age-groups: 55–59, 60–64, …, 75–79. The main approach to developing the 

untreated condition model is that the distribution of ARF0 varies between age groups due to 

variation in the distributions in bone strength. This is based on the observation that bone is lost 

during ageing, as characterised by decrease in average femoral neck areal bone mineral density 

(FN-aBMD) across age-groups [3]. The untreated condition model predicts how ARF0 

distributions vary between age-groups based on epidemiologically-observed variations in FN-

aBMD distributions. The model implementation is described below. 

A unit change in FN-aBMD changes vBMD by an amount M0 that is assumed to be a universal 

constant and is determined as follows. Clinical computed-tomography (CT) scans of the hip taken 

from the Sheffield cohort subjects are segmented to obtain the proximal femur region, which is 

then discretised into a finite-element (FE) tetrahedral mesh with element-wise vBMD (obtained 

by mapping the mesh to the CT image). Ninety-two of the (native) FE meshes are morphed to a 

template mesh (the remaining 6 could not be morphed) such that all morphed meshes had 

identical number of elements and at anatomically similar locations. A non-linear least-squares 

procedure that minimises the difference max
𝑒𝑒∗

�𝐷𝐷𝑠𝑠𝑒𝑒
∗ − 〈𝐷𝐷𝑠𝑠𝑒𝑒

∗〉𝑠𝑠 − 𝑀𝑀0(𝑑𝑑𝑠𝑠 − 〈𝑑𝑑𝑠𝑠〉𝑠𝑠)�  is used to 

determine M0. Here, D and d denote vBMD and FN-aBMD respectively, indices e* and s (s = 

1…92) identify a specific morphed mesh element and a specific subject respectively, the operators 

〈∙〉𝑠𝑠 and max
𝑒𝑒∗

|⋅| denote an average taken over all subjects and the maximum absolute value taken 

over all morphed mesh elements respectively. 

For each of the 5-year age-groups above, 31×N virtual subjects are defined (N = 10000) as follows. 

N samples of the triplet (m, H and d) are drawn and each triplet is associated to the 31 proximal 

femur geometries of the control subjects in the Sheffield cohort. The distributions of m and H 

are assumed to be correlated and the distributions of d and proximal femur geometries are 

assumed to be independent with respect to all other variables; m, H and d are assumed to be 

normally distributed and the 49 proximal femur geometries are assumed to represent the 

distribution of proximal femur geometries in the general British elderly female population. Mean 

and standard deviation (SD) of m and H are based on age-specific data [3] but the covariance is 

considered age-group independent [4]. Age-group-specific mean and SD of d are taken from the 

OPUS study [3]. To complete the definition of a virtual subject the vBMD distribution within the 
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proximal femur geometry needs to be specified, which is straightforward given M0 and the FN-

aBMD of the Sheffield cohort subject. As this requires substantial computational effort in 

executing FE simulations for all virtual subjects, the following approach is instead taken. Here, it 

is assumed that a unit change in FN-aBMD changes bone strength under side-fall configuration 

by an amount 𝑘𝑘𝑠𝑠
𝛼𝛼′,𝛽𝛽′, which for a given combination of loading orientation and proximal femur 

geometry, is a universal constant. The angles of hip abduction (α′ ) and internal hip rotation (β′ 
) specify the loading orientation (see [2] for details) and the label s identifies the proximal femur 

geometry of a Sheffield cohort control subject. We obtain 𝑘𝑘𝑠𝑠
𝛼𝛼′,𝛽𝛽′ =

�𝑆𝑆𝑠𝑠′
𝛼𝛼′,𝛽𝛽′ − 𝑆𝑆𝑠𝑠

𝛼𝛼′,𝛽𝛽′� (𝑑𝑑𝑠𝑠′ − 𝑑𝑑𝑠𝑠)�  by determining the orientation- and femur geometry-specific bone 

strength 𝑆𝑆𝑠𝑠′
𝛼𝛼′,𝛽𝛽′  for only one virtual subject 𝑠𝑠′ with geometry identical to s (discretised identically 

to the native FE mesh of s) and with 𝑑𝑑𝑠𝑠′  sufficiently different from ds. With 𝑘𝑘𝑠𝑠
𝛼𝛼′,𝛽𝛽′ known, 𝑆𝑆𝑠𝑠′

𝛼𝛼′,𝛽𝛽′ 

for any arbitrary virtual subject is known without needing any further FE analysis. In order to 

ensure repeatability of determining 𝑘𝑘𝑠𝑠
𝛼𝛼′,𝛽𝛽′, we set 𝑑𝑑𝑠𝑠′ = �̅�𝑑𝑗𝑗 where is �̅�𝑑𝑗𝑗 is the mean FN-aBMD of 

either 55–59 or 75–79 age-group in the OPUS study, whichever is father from d. 

 

3. Results and Discussion 

The rate of change in vBMD with respect to FN-aBMD was found to be M0 = 0.391 cm–1. The 

residual of the non-linear least squares error was found to be 0.092 g/cm3 and quantifies the error 

in predicting vBMD due to its assumed linear relationship with FN-aBMD. Considering that the 

average vBMD across all elements and subjects is 0.2607 g/cm3, the linear relationship is 

associated with an error of 35.3% on average. The rather large error is clearly a limitation of the 

assumption that bone loss is homogeneous, which is known to be higher in trabecular bone 

relative to cortical bone. When considered over all orientations and geometries, the median rate 

of change of bone strength with respect to FN-aBMD was found to be 44.9 N/(10 mg/cm2). 

Considered across all geometries, the median rate of change ranged from 34.8–59.5 N/(10 

mg/cm2), while considered across all orientations, 

the median rate of change ranged from 26.7–58.1 

N/(10 mg/cm2) – revealing a stronger sensitivity to 

impact orientation than to bone geometry. It must 

be noted that this result is potentially affected by 

the ranges of impact orientations and femoral 

geometries considered here. In the previous study, 

it was found that the threshold value of 

ARF0=37.4% resulted in the most optimal 

stratification between fracture and non-fracture 

subjects. Figure 1 compares fracture incidence 

predictions based on this threshold against 

epidemiological data [1]. 

The untreated condition model predicts similar trends in age-specific hip fracture incidences, 

however with magnitudes ~30 times higher than those observed epidemiologically. The 

Figure 1 Comparison of model prediction and 
epidemiological observation of hip fracture in 
elderly British women. Note the difference in 
scale between the left and right vertical axes. 
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discrepancies arise from the following assumptions: (i) postural attenuation of impact (accounted 

for in the ARF0 model) remains constant between age-groups (potentially overestimating fall 

severity in the younger elderly), (ii) bone geometry in the Sheffield cohort is representative of its 

distribution in the general population, (iii) fall rate data is reliable and (iv) bone loss is spatially 

homogeneous. The first three are due to paucity of biomedical input data that feeds the model 

and are major research questions in themselves. The last assumption can be removed by 

developing a law for bone loss based on tissue type and is currently under progress. 

The model validation strategy is to test predictions against epidemiological data. i.e. by comparing 

predictions against parts of the population (e.g. different age bands). The advantage is that 

sufficient epidemiological data regarding fracture incidence is available. The disadvantage is that 

we test whether fracture incidence is matched, not whether a specific subject suffers a fracture. 

However, imagine that we compartmentalise the same population in different ways by age bands, 

by sex, by geographical regions, etc. If the model predictions are satisfactory for each method of 

compartmentalisation, then one can argue that the model will also satisfactorily predict fracture 

risk by combining the compartmentalisations. This would imply that model prediction is 

satisfactory in a specific age-band, for a specific sex, for a specific region, etc. As we increase the 

number of ways the population is compartmentalised, and in turn validate the model, we narrow 

down the number of subjects that meet the conditions when all compartments are combined, 

thus achieving subject-specific validation in the limit. 
 

4. Conclusions 

An untreated condition model was developed with the aim of predicting age-specific hip 

fracture incidence in British women. Several lacunae in the quantitative characterisation of 

ageing need to be met in order to realise an accurate ISCT for fragility hip fractures. 

This study was partially supported by the UK Engineering and Physical Sciences Research 

Council through the MultiSim Project (EP/K03877X/1). 
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