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Million Veterans Program
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● VA’s Common Data Warehouse contains:

○ Clinical data for over 22 million patients.

○ ~3.4 billion unstructured medical documents.

○ Genomic data for 600,000 patients.

● 8 DOE Labs:

○ Lawrence Berkeley
○ Lawrence Livermore
○ Los Alamos
○ Sandia
○ Pacific Northwest

○ Oak Ridge
○ Brookhaven
○ Argonne



MVP@LBNL: Suicide Prevention
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U.S. Veterans experiencing substance abuse, chronic pain, mental health issues, etc.
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20 U.S. Veterans dying by suicide per day.

REACH-VET STORM



MVP@LBNL: Suicide Prevention
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U.S. Veterans experiencing substance abuse, chronic pain, mental health issues, etc.
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0 U.S. Veterans dying by suicide per day.

REACH-VET STORMGeospatial Analysis Genomics NLP



Deep Learning For Suicide Prevention
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Integration of Multimodal Data 
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Genomic Profiles

Geospatial Data

Structured/Unstructured 
Medical Records

Find Patterns Overlooked 

By Experts

Reduce Time Spent Feature 

Engineering

Predict Suicide Risk At 
Patient Level

Construct Veteran Suicide 
Profile

Provide Decision Support 
To VA DoctorsMedical Imaging



Related Work - Applying DL To EHR
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● Rajkomar et al.1  used Recurrent Neural Networks to predict for 

unplanned readmission and mortality.

○ Common data model: 

■ Fast Healthcare Interoperability Resource (FHIR).2

○ Recurrent Neural Network (i.e LSTM).3

■ Computationally expensive to train.

■ Limited scope (last 48 hours)

○ Large hyper parameter search for embedding categorical variables 4: 

■ >201, 000 GPU hours used to train final model

1. Rajkomar et al.. (2018). Scalable and accurate deep learning with electronic health records. NPJ Digital Medicine, 1(1), 18.
2. Walinjka & Woods (2018). FHIR tools for healthcare interoperability. Biomedical J. of Scientific and Technical Research.
3. Choi et al. (2016). Using recurrent neural network models for early detection of heart failure onset. J. of the Am. Med. Informatics Assoc..
4. Guo & Berkhahn (2016). Entity embeddings of categorical variables. arXiv preprint arXiv:1604.06737.
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Can expanding the scope of the input 
representation to include common 

medical context and longer timelines 
improve a model’s ability to predict medical 

outcomes?



● The Observational Medical Outcomes Partnership (OMOP) CDM 5  :

○ Designed with data research as its primary purpose.

○ Addresses bottleneck in predictive medicine: 

■ Lack of standardize data between medical facilities.

○ Clinical data are tagged with medical concept identifiers:

■ Harmonized between observations, diagnosis, medication, etc.

○ Schema currently in use by VA data science team.

5. Hripcsak et al. (2015). Observational Health Data Sciences and Informatics (OHDSI): opportunities for observational researchers. Studies in health technology and informatics, 216, 574.

OMOP Data Model
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Data Preparation

10Predicting ICU Readmission Using Context-Enriched Deep Learning; Rafael Zamora-Resendiz



Medical Concept Embeddings
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● OMOP’s Standardized Vocabularies 

contains unique identifiers to medical 

concepts from source vocabularies included 

in the Unified Medical Language System 

(UMLS).

● OMOP’s concept_ancestor table contains:

○ 68 million hierarchical relation for 

○ 3.3 million standard concepts.

● Method: Poincare Space Embeddings 6

● Model scaled to fill Tesla V100.

6. Nickel et al. (2017). Poincaré embeddings for learning hierarchical representations. In 

Advances in neural information processing systems (pp. 6338-6347).’ Visualization of Poincare embeddings for 500 randomly sampled 
OMOP concepts in 2-dimensions. Concepts with more common 
relations between other concepts  appear closer to the origin.
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Medical Concept Embeddings
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Visualization of Poincare embeddings for 500 randomly sampled 
OMOP concepts in 2-dimensions. Concepts with more common 
relations between other concepts  appear closer to the origin.
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● OMOP’s Standardized Vocabularies 

contains unique identifiers to medical 

concepts from source vocabularies included 

in the Unified Medical Language System 

(UMLS).

● OMOP’s concept_ancestor table contains:

○ 68 million hierarchical relation for 

○ 3.3 million standard concepts.

● Method: Poincare Space Embeddings 6

● Model scaled to fill Tesla V100.

6. Nickel et al. (2017). Poincaré embeddings for learning hierarchical representations. In 

Advances in neural information processing systems (pp. 6338-6347).’



Multi-Head Attention For EHR
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● “Transformers”, the current state-of-the-art modelling method for natural language translation.

○ Attention is All You Need 7

● Multi-Head Attention is used to learn intermediate representation of sequences.

● Networks learn to apply “attention” over sections of a sequence to predict the next event.

● Contemporary work applying attention to EHR:

○ Attend and Diagnose: Clinical Time Series Analysis Using Attention Models (2018) 8

7. Vaswani et al. (2017). Attention is all you need. In Advances in neural information processing systems(pp. 5998-6008).

8. Song et al. (2018, April). Attend and diagnose: Clinical time series analysis using attention models. In Thirty-Second AAAI Conference on Artificial Intelligence.
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● Benefits:
○ Reduces data sparsity (i.e. dense representation).
○ Process patient histories with varying granularities of event occurrences.

● Drawbacks:
○ Large number of medical events can be recorded for even just 1 medical admission.
○ Example: Average of ~ 5,000 events per admission in MIMIC-III.



Scaled Dot Product AttentionScaled Dot Product Attention

Model Architecture
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Softmax Softmax ... Softmax Softmax Avg

N x

Medical
Event

SE(Δt)+ SE(Δt) ... SE(Δt) SE(Δt)

Medical
Event ... Medical

Event
Medical
Event

MLP MLP ... MLP MLP

LinearLinearLinear

Scaled Dot Product Attention

Class Probability Output:
Cross Entropy Loss

Multi-Head Attention 
Encoder Stack:

Sequential Encoding:

Patient History Input

LinearLinearLinear LinearLinear... LinearLinearLinear LinearLinearLinear

CE = - ∑ ti log( f(s)i ) 
C

i

SE(Δt, 2i) = sin(Δt/𝝺 2i/d)

SE(Δt, 2i+1) = cos(Δt/𝝺 2i/d)

𝝺 = 700,800 / 2𝜋 

Hours in an 80 year lifespan.



Retrospective Study: MIMIC-III
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● MIMIC-III 9 contains data of ICU stays of the Beth Israel Deaconess Medical Center from 

2001-2012.

● Highly imbalanced dataset:

○ 608 suicide related patients; 45,913 non-suicide related patients

○ Not enough data for meaningful results, so we tackled the following tasks:

● Can we predict the likelihood that a patient will die or have an unplanned readmission after 

being discharged from the ICU?

● Can we predict the likelihood that a patient will die in-hospital using records from the first 

48-hours after admission?

● Both tasks are still highly unbalanced.

9. Johnson et al.. (2016). MIMIC-III, a freely accessible critical care database. Scientific data, 3, 160035.
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30-Day Unplanned Readmission Results
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● Dataset split provided by Lin et al. 10 :

○ Trained for 50 epochs                    
○ Batch Size: 32; Learning Rate: 0.001 ------ 22.3 average batch updates per second

10. Lin et al.(2019). Analysis and prediction of unplanned intensive care unit readmission using recurrent neural networks with long short-term memory. PloS one, 14(7), e0218942.

Model Feature Set Dataset min(Se, P+) AUPRC AUROC

Rajkomar et al.’s  

LSTM

Last 48 hours FHIR UCSF Medical 
DB

[216,221
Admissions]

- - 0.75

Lin et al.’s LSTM+CNN Last 48 hours: ICD9 + 
Demographics + expert selected 

features

MIMIC-III 0.367 0.4911 0.791

OMOP Multi-Head 
Attention

Sampled Full History: OMOP 
Schema

MIMIC-III 0.5878 0.6304 0.8519

Predicting ICU Readmission Using Context-Enriched Deep Learning; Rafael Zamora-Resendiz

Tesla V100 GPU: ~ 2.5 million examples per hour



In-Hospital Mortality Results
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● Dataset split provided by Song et al. :

○ Trained for 100 epochs

○  Batch Size: 32; Learning Rate: 0.001 ------ 23.1 average batch updates per second

Model Feature Set Dataset min(Se, P+) AUPRC AUROC

Rajkomar et al.’s  LSTM Last 48 hours: FHIR UCSF Medical 
DB

[216,221
Admissions]

- - 0.95

Lin et al.’s  
LSTM+CNN

48 hours after Admission:
ICD9 + Demographics + expert 

selected features

MIMIC-III 0.516 0.533 0.851

OMOP Multi-Head 
Attention

Sampled Full History up to 48 
hours after Admission: OMOP 

Schema

MIMIC-III 0.623 0.653 0.837
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Challenges and Ongoing Work

● Access to MVP data has been established as of August 2019.

○ Currently focusing on predicting risk of suicide.

● On the model front:

○ Scale deep learning to data spanning 20 years.

○ Capturing subtle concepts such as social isolation.

○ Integrate genomic data, medical notes, images.

● On the results front:

○ Physicians will want: 

■ Uncertainty quantification

■ Interpretable methods: Workflow allows mappings to raw OMOP
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