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Machine Learning In
Cancer Research

e Cancer Susceptibility

* Cancer Detection and Diagnosis
e Cancer Recurrence

* Cancer Prognosis and Survival

Deep Learning in Cancer = many Methods

¢ Cancer CIaSS|flcation and CIUSter|n * AutoEncoders — learning data representations for

e Cancer Drug Response Prediction

°® Ca ncer G enom ICS An ) yS | S . algebra, drug candidate generation

CNNs, Attention — type classification, drug response,
outcomes prediction, drug resistance

[ ) Cancer Medical Records AnalySiS * RNNs - sequence, text and molecular trajectories analysis
* Cancer Biology

classification and prediction of drug response, molecular
trajectories

* VAEs and GANs - generating data to support methods
development, data augmentation and feature space
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What is Cancer?

* Large number of complex diseases

* Each behave differently depending on cell type from
which the tumor originates

* Age on onset, invasiveness, response to treatment

e Common General Properties
* Abnormal cell growth/division (cell proliferation)

* Spread to other regions of body (metastasis)
* Malignant tumors



Normal cell Cell divides to create
organized structure

Cell is destroyed by self-inflicted
cell death or immune system
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Restores normal structure

Mutation in cell creates
abnormal growth
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Cell bypasses death signals
and continues to grow
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Cancer forms
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Table. Last 20 Oncologic Drugs Approved Between 2009 and 2013 by the US Food and Drug Administration

Cost per Year of
Dreg and Indication Treatment, $* Parent Drug Mechanism of Action Clinical Benefit
Sorafenib for papillary thyrold cancer 140984 NA First approved VEGER and RAS Nedian PFS, 10 8vs 5.8 mo
. tyrosine lonase infabitor
Cri ﬂ
L4 . I inhi
Obinutuzumab for chronic lymphocytic 74 Retuximad Anti-CD lonal antody 5. 23 Ov‘ 1.1 mo
leukemu
78252 2 monocional antibody
)‘3 l ma.n
A tyrosine SR
median 05, NS
Lenalidomide for mantie-cell lympboma 124870 Thalidomide imewnomodulatory drug RR, 26%; medan DOR, 16.6 mo
(thalidomide analogue)
Trametinib for malignant melanoma 125280 NA First approved mek inhibitor Nedian PFS, 4 8vs 1.5m0
Dabrefenib for malignant melanoma 105 440 Vemurafenib B8RAF inhibitor Nedian PFS, S.1vs 2.7 mo;
median 05, NS
Radium 223 for prostate cancer 82800 First approved radiotherapeutic drog  Median 05, 14.0vs 11.2 mo
Erlotini non-seall-cell cancer 82 827 Nedian PFS, 10,4 vs 5.2 mo;
r l r
Pomalidomide for multiple myeloma 150408 Thalidomide immunomodulatory drug RR, 29%; medan DOR, 7.4 mo
{thalidomide analogue)
Bevacizumad for colorectal cancer 59422 NA First anti-VEGF monacional antibody  Median PFS, 5.7 vs 4 mo;
medim 05, 11.2 vs 9.8 mo
Ponatinid for chronic myeloid leukemia 137952 Imatinib Ber-abl tyrosine kinase inhibitor Najor cytogenetic response, S4%;
and Ph” acute lymphoblastic leukemia median DOR, 3.2-9.5 mo
Abiraterone for prostate cancer 92092 Ketoconazole Androgen biosynthesss inhibitor Nedian 08, 35.3 vs 30.1 mo
Cabazantiib for medullary thyroid cancer lssoo rus: mu Median PFS, 11.2 vs 4 mo;
median 05, NS
Omacetaxine for chronic myeloid leuk m t Major cytogenetic response,
14.3%; medhan DOR, 12.5 mo
Nab-paclitaxel® for non-small-cell 82231 Paclitaxel Albumin-bound paclitacel RR, 33% vs 25%; medan 05, NS

lung cancer {microtubule inhibitor)
Regorafend for colerectal cancer 141372 Sorafend inase inhi Nedian PFS, 2 vs l

survival: Ph Philadeiphiy chromosome positive: RR. response rate; UA, U This drug was approved separately for 2 iIndications.
unavaslable; (VIEGF(R), (vascular) endothedial cell growth factor (receptor)




50% of Patients do not respond to
chemotherapy for some tumors

TRADITIONAL MEDICINE vs. PRECISION MEDICINE

doctors use a patient’s o
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Drug Response is specific to Cancer type and
specifig genetic variance in each tumor

Tumors Clustered by Response
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Fig. 2. Hmhmm”md 'S drags (columns) on 624 cell Emes (rows). (- meams the most sensitive, rod means the most resistant.

=== Drugs Clustered by Response ===
IEEE_J Biomed Health Inform_2015 Sheng.par

Green means
Sensitive

Red means
Resistant






PDX models to the rescue

Patient-derived xenograft (PDX) models, however, offer the potential to transform translational
oncology °. PDX models are created by transplanting fresh tumour tissues from human patients
directly into mice.
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How PDX models are made and characterised

PDX tumours have been shown to preserve key features of a specific cancer and these models have
been shown to be predictive of clinical outcomes - unlike cell culture models. Furthermore, PDX
models have been used to predict biomarkers of drug susceptibility and drug resistance, which is
crucial for clinical trial phases of development where multiple drugs fail. They are becoming the
preferred preclinical tool to improve the drug development process.
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( % adenccarcinoma) (ditfferentiated CIN) ( % adenccarcinoma) ( % adenocarcinoma)
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Overarching Goal

A single ML model trained on data
from many cancer samples and
many drugs that can predict drug
response across wide range of
tumors and drug combinations



Modeling Cancer Drug Response
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Two General Use Cases for Models

* Predictive Oncology

* Predicting outcomes of experiments or patient
treatments

* Fixed Drugs .. Sweep tumors

* Drug Discovery
* In silico screening novel compounds for activity
* Fixed Tumors .. Sweep drugs

* Validation strategies different
* The models are subtly different
* We can tune models for each case




Uno-MT

Auxiliary
molecular

Drug response
Cell Cell Cell RNAseq Drug Drug = Auxiliary
line line line auto target
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DI COUNT

58051
50693
560534
40203
38921
36595

35932
27292
25044
20226
19751
16862
16086
15985
15980
15912
14725
13719
13153
13060
12744

TYPE
Skin_Cutaneous_Melanoma
Colon_Adenocarcinoma
Lung_Adenocarcinoma
Kidney_Renal_Clear_Cell_Carcinoma
Ovarian_Serous_Cystadenocarcinoma
Breast_Invasive_Carcinoma

Lymphoid_Leukemia
Glioblastoma_Multiforme
Lung_Small_Cell_Carcinoma
Lung_Non-Small_Cell_Carcinoma
Sarcoma
Pancreatic_Adenocarcinoma
Brain_NOS
Acute_Myeloid_Leukemia
Lung_Squamous_Cell_Carcinoma
Acute_Lymphoblastic_Leukemia

DI = dose independent

+ NCI60

GDSC1000

Head_and_Neck_Squamous_Cell_Carcinoma

Uterine_Corpus_Endometrial_Carcinoma

Esophageal _Carcinoma

Lymphoid_Neoplasm_Diffuse_Large_B-cell_Lymphoma

Ovary_NOS
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Can we build models that are predictive of

drug response?

Dose Independent, Top 6. Top21, cancers, Attention MLP (Means from 10-fold CV)

Top 6 Cancer Types

Precision Recall fi1-score

0.917 0.790 0.837
— 0.933 0.853 0.882

0.933 0.855 0.884

Top 21 Cancer Types
Precision Recall f1-score
— 0.95 0.927 0.935

OENEﬁGY @) NATIONAL CANCER INSTITUTE

Mordred, Lincs1000 (bin.3) ;5000

Dragon7, Lincs1000 (bin.3)
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AUC Distribution for Top 21 Pan-Cancer Data
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Single Drug Response

Drug
Afatinib
Bortezomib
Docetaxel
Doxorubicin
Etoposide
GDC-9941
Navitoclax
Paclitoxel
Selumetinib
SN-38
Temsirolimus
Tipifarnid
Vinorelbine
Yorinostat
mean

R”2
0.4369
0.3871
0.5748
0.3749
0.3787
0.3294
0.4329
0.5299
0.2544
0.3415
0.2048
0.3187
0.1407
0.4041
0.3678

MAE
0.0737
0.0752
0.1154
0.1103
0.1108
0.0744
0.0982
0.1285
0.1056
0.1150
0.1136
0.1115
0.1289
0.0627
0.1017

AUC
0.9248
0.9429
0.9158
0.7754
0.8855
0.6924
0.9035
0.8471
0.8831
0.8269
0.7406
0.8474
0.7605
0.9134
0.8474

Accuracy
0.9679
0.9569
0.8853
0.7108
0.8768
0.9478
0.9295
0.7626
0.9115
0.8361
0.8912
0.8981
0.8367
0.9532
0.8832

True label

Top 21 Cancer Types
in MD DI formulation

Normalized confusion matrix

Non-Response

Response -

0.11

Models are best of RF, LGB, GB, LR, etc.; features are RNAseq and D7 descriptors
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NLP Learning Curves

| = — Xentropy
11.71 79 = 14.0 m°35 Top-1
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6.33 == Xentropy Trend
== Top-1 Trend
3424 < == Top-5 Trend
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Image Classification
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Learning curve (power-law)

+~— 2-layer NN
e(m) =am?; a=0.43, p=-0.10)| 2-layer NN Trend
\ «— 4-layer NN
\[c(m) =am; a=0.50, f=-0.19) == 4-layer NN Trend
~< ~< *= LghtGBM

===+ LightGBM Trend
\\\
\~¥~§
.

NN

~~~{elm) =am?; a=4.98, p=-0.71 [ e

e ——
——————————
—————————————

Training Dataset Size (Log2 scale)

Top6 Cancer Response

It seems that the advent of models that beat the power-law exponent —
that get more data efficient as they learn — might be an important
empirical milestone on that path.

https://arxiv.org/pdf/1712.00409.pdf




Why deep learning

A
Deep learning
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Amount of data

More training data = Lower Error




Learning Curves — Variance and Bias

Learning curve — Variance

ho(x) =00+ 60z +--- 4 ()“)“J.Hm

Test error

error

Desired performance
//_’//’?r;ining error

m (training set size)

Do we have enough data?
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Learning curve — Bias

h(}(.l') — (}() + ()l.l'

£l

E Test error
m .
/ﬁ Training error
/ Desired performance

m (training set size)

Do we have the right data?



Learning Curves
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Can we build models
that generalize across studies?
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UnoMT Multitask Deep Learning Cross-Study

Best out of Study R?=0.61

Table 6. Best cross study validation results with a 3-task UnoMT

Testing set
| wcieo CTRP | GODSC NIT CatAcc| Site Acc | Type Acc
ncee | 00 I &'_‘;fa 99.43% | 96.75% | 96.97%
cre [l .y [ oo.56% | see2% | ob.sen
Trainingset | GOsC | o800 | e e | Mok 27 2 09.43% | 96.03% | 96.07%
cor [ . fedetoad] - e 99.12% | 96.36% | 96.38%
ocsi | :"E'f“""’ :.'.":;, M‘Z'f"?‘ | 99.43% | 96.84% | 96.62%

MAE = Mean Absolute Error (in percent growth)




Pilot 1

Why is NCI-60 better in the diagonals?

source_scale Testing set
loss=MSE NCI160 CTRP GDSC CCLE gCSl
—— R2=036 | R2=021 | R2=045 | R2=042
MAE =329 | MAE=362 | MAE=346 | MAE=356
. R2=039 | R2=067 | R2=019 | R2=058 | R2=056
MAE =313 | MAE=233 | MAE=354 | MAE=294 | MAE =293
R2=031 | R2=023 | R2=052 | R2=051 | R2=057
Trainingset|  GDSC | e — 350 | MAE =369 | MAE =276 | MAE =27.6 | MAE = 30.1
. R2=-003 | R2=002 | R2=-004 | R2=067 | R2=046
MAE =460 | MAE=448 | MAE=436 | MAE=256 | MAE=335
o R2=-007 | R2=-001 | R2=-006 | R2=030 | R2=078
9 MAE = 46.0 | MAE =456 | MAE =45.7 | MAE = 39.9 | MAE = 20.01




Variability in Replicates Sets the R? Ceiling

Table I: Charactenistics of drug response datasets included in the cross-study analysis

Dataset  Cells Drugs Dose Response Samples  Measured Response Groups  Viability Assay

NCI60 60 52,671 18,862,308 3,780,148  CellTiter Glo
CTRP 887 544 6,171,005 395,263  CellTiter Glo
CCLE 504 24 93,251 11,670  CellTiter Glo
GDSC 1,075 249 1.894.212 225480  Syto60

gCsl 400 16 58,094 6,455 CellTiter Glo

Table 2: Dose response variability among replicates in the same study

Study  Samples with Replicates  Mean Response  R? Explaining Response  R? for Samples with

Replicates per Group S.D. in Group with Group Mean Replicates
NCI6OD  41.56% 2.62 0.145 0.959
CTRP  4.09% 2.05 0.188 0.996

GDSC  2.62% 2.00 0.219 0.996




Pilot 1

Why is Model Transfer from CTRP => GDSC so Poor?

source_scale Testing set
loss=MSE NCI60 CTRP GDSC CCLE gCSl

— R2=080 | R2=036 | R2=021 | R2=045 | R2=042

MAE =180 | MAE=329 | MAE=362 | MAE=346 | MAE=356

e R2=039 | R2=067 R2 = 0.56

MAE =313 | MAE =233 MAE = 293

R2=031 | R2=023 R2 = 0.57

Trainingset|  GDSC | \yar =350 | MAE =369 | MAE =276 | MAE =27.6 | MAE =30.1
= R2=-003 | R2=002 | R2=-004 | R2=067 | R2=046

MAE =460 | MAE=448 | MAE =436 | MAE =256 | MAE =335

o R2=-007 | R2=-001 | R2=-006 | R2=030 | R2=078

9 MAE = 46.0 | MAE =456 | MAE = 45.7 | MAE = 39.9 | MAE = 20.01




Cross-study Response Consistency

* CTRP and CCLE use the same viability assay
e GDSC uses a different one: the inconsistency is well documented

* Different dose-independent aggregation metrics work differently
(R%in the table is based on direct mapping)

Table 3: Cross-study response consistency in identical cell-drug pairs

Source Study Target Study Overlapping Cell-Drug Groups R2 on AUC R2on AUCI R2 on DSS

CTRP CCLE 2,338 0.5944 ).6408 0.6347
CTRP GDSC 17,259 0.3016 ).01 0.0062




Is drug diversity
more important
than cell diversity?

Apparently yes.

What does this
mean for PDM and
PDO experiments?

Test R*

Test R

0.6 1

0.5

(=]
o

0.31

0.2

0.1

0.0

-0.1

-0.2

0.31

0.2 1

0.1

0.0

-0.1

-0.2

-0.3

100

50

Predicting CCLE AUC1 with CTRP model
Predicting GDSC AUC with CTRP model

Mapped CCLE AUC1 from overlapping CTRP data
Mapped GDSC AUC from overlapping CTRP data

200 300 400 500 600
Number of cell lines used in training CTRP model

Predicting CCLE AUC] with CTRP model

700

Predicting GDSC AUC with CTRP model
Mapped CCLE AUC1 from overlapping CTRP data
Mapped GDSC AUC from overlapping CTRP data

100 150 200 250
Number of drugs used in training CTRP model
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350
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Comparison on PDX Prediction Performance With and
Without Transfer Learning

Spearman rank

P-value (Spearman rank

Analysis name R? P-value (R?) correlation coefficient | correlation coefficient)
PDX-Only 0.064(0.031) 0.372(0.022)
CCLE-TL 0.042(0.016) 8.01E-02 0.355(0.013) 7.28E-02
gCSI-TL 0.100(0.016) 8.29E-03 0.389(0.017) 7.55E-02
NCI60-TL 0.102(0.013) 5.16E-03 0.407(0.016) 1.43E-03
CTRP-TL 0.092(0.019) 3.35E-02 0.415(0.0 1.51E-04
GDSC-TL 0.110(0.017) 1.50E-03 7.22E-05

PDX-only is the analysis without transfer learning. -TL in analysis name indicates transter learning from a CCL dataset.

 Mean (standard deviation) of prediction performance is evaluated through 10 times of 10-fold
cross-validations on PDXs

* Four out of the five transfer learning analyses show a prediction performance statistically
significantly better than that of PDX-only analysis, evaluated by the p-value of t-test < 0.05




: * ECP-CANDLE GitHub Organization:
CANDLE PrOJECt https://github.com/ECP-CANDLE

 CANDLE Python Library — make it easy to run on DOE Big Machines,
scale for HPO, UQ, Ensembles, Data Management, Logging, Analysis

 CANDLE Benchmarks — exemplar codes/models and data
representing the three primary challenge problems

* Runtime Software — Supervisor, Reporters, Data Management, Run
Data Base

* Tutorials — Well documented examples for engaging the community

* Contributed Codes — Examples outside of Cancer, including Climate
Research, Materials Science, Imaging, Brain Injury

* Frameworks — Leverage of TensorFlow, Keras, Horovod, PyTorch, etc.
* LL Libraries — CuDNN, MKL, etc. (tuned to DOE machines)



Scope of CANDLE workflows

Data Preparation Training Inference
Batch Normalization Ensembles C - -
Data Augmentation ] 106 — 1010 N

Outlier Removal . . )
Scaling/Quantization Domain Adaptation — units of work
Concordance Processing CUIITIUCIILE OLUlITIg
Cross-validation L
Model Discovery 10° — 10/ - ¢
, 1 = Units of work Outputs
Residual Networks units ot wor

e — Accuracy / K-rank / R2
10> — 10° o

— . — actorial Design F :
units of work eature importance

?opU|at|on Based HPO Learning Curves Performance Analysis

. S —
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How are we using Large-Scale Computing

* Deep Sweeps on Features/Feature Combinations
* Recently ran 16K model jobs on Summit

* Hyperparameter Optimization
* Tuning model settings (Big runs on Cori, Theta, Summit, Titan)

* Neural Architecture Search (Model Discovery)
* Big runs on Theta (SC19 Paper)

* Hierarchical Cross Validation Study > 500K models
* Bayesian approach to online learning (accelerated convergence)

e Data Augmentation and Generation Networks
* Exploring strategies for “Low Data” learning

* Uncertainty Quantification =
e Bootstrapping, parameter sweeps E\(C\)P COMPUTING
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