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Machine Learning In 
Cancer Research

• Cancer Susceptibility
• Cancer Detection and Diagnosis
• Cancer Recurrence
• Cancer Prognosis and Survival
• Cancer Classification and Clustering
• Cancer Drug Response Prediction
• Cancer Genomics Analysis
• Cancer Medical Records Analysis
• Cancer Biology 





What is Cancer?

• Large number of complex diseases
• Each behave differently depending on cell type from 

which the tumor originates
• Age on onset, invasiveness, response to treatment

•Common General Properties
• Abnormal cell growth/division (cell proliferation)
• Spread to other regions of body (metastasis)
•Malignant tumors









50% of Patients do not respond to 
chemotherapy for some tumors



IEEE_J_Biomed_Health_Inform_2015_Sheng.pdf

Drug Response is specific to Cancer type and 
specific genetic variance in each tumor
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Cancer Organoids



Overarching Goal

A single ML model trained on data 
from many cancer samples and  
many drugs that can predict drug 
response across wide range of 
tumors and drug combinations



Modeling Cancer Drug Response
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Two General Use Cases for Models

• Predictive Oncology
• Predicting outcomes of experiments or patient 

treatments
• Fixed Drugs .. Sweep tumors

• Drug Discovery
• In silico screening novel compounds for activity
• Fixed Tumors .. Sweep drugs

• Validation strategies different

• The models are subtly different 

• We can tune models for each case



Uno-MT 



Uno-MT
Deep Multitask
Model for
Response
Prediction



1 58051 Skin_Cutaneous_Melanoma
2 56693 Colon_Adenocarcinoma
3 56534 Lung_Adenocarcinoma
4 40203 Kidney_Renal_Clear_Cell_Carcinoma
5 38921 Ovarian_Serous_Cystadenocarcinoma
6 36595 Breast_Invasive_Carcinoma

7 35932 Lymphoid_Leukemia
8 27292 Glioblastoma_Multiforme
9 25044 Lung_Small_Cell_Carcinoma
10 20226 Lung_Non-Small_Cell_Carcinoma
11 19751 Sarcoma
12 16862 Pancreatic_Adenocarcinoma
13 16086 Brain_NOS
14 15985 Acute_Myeloid_Leukemia
15 15980 Lung_Squamous_Cell_Carcinoma
16 15912 Acute_Lymphoblastic_Leukemia
17 14725 Head_and_Neck_Squamous_Cell_Carcinoma
18 13719 Uterine_Corpus_Endometrial_Carcinoma
19 13153 Esophageal_Carcinoma
20 13060 Lymphoid_Neoplasm_Diffuse_Large_B-cell_Lymphoma
21 12744 Ovary_NOS

RANK       DI COUNT                   TYPE Pilot 1

+ NCI60

DI ⟹ dose independent



Can we build models that are predictive of 
drug response?

Dose Independent, Top 6. Top21, cancers, Attention MLP (Means from 10-fold CV)

Top 6 Cancer Types
Precision Recall f1-score
0.917 0.790 0.837 Mordred, Lincs1000 (bin.3)
0.933 0.853 0.882 Dragon7, Lincs1000 (bin.3)
0.933 0.855 0.884 Dragon7, Lincs1000 (bin.1)

Top 21 Cancer Types
Precision Recall f1-score
0.95 0.927 0.935 Dragon7, Lincs1000 (bin.3)

(~6,200 features)

Pilot 1



Single Drug Response

Models are best of RF, LGB, GB, LR, etc.; features are RNAseq and D7 descriptors

Pilot 1

Top 21 Cancer Types 
in MD DI formulation



It seems that the advent of models that beat the power-law exponent —
that get more data efficient as they learn — might be an important 
empirical milestone on that path.

https://arxiv.org/pdf/1712.00409.pdf

Learning Curve Power Law

NLP Learning Curves Image Classification Top6 Cancer Response



More training data ⟹ Lower Error



Learning Curves – Variance and Bias
Pilot 1

Do we have enough data? Do we have the right data?



MAE

Learning Curves



Can we build models 
that generalize across studies?

Pilot 1





Why is NCI-60 better in the diagonals?
Pilot 1



Variability in Replicates Sets the R2 Ceiling
Pilot 1



Why is Model Transfer from CTRP => GDSC so Poor?

Pilot 1



Cross-study Response Consistency  

• CTRP and CCLE use the same viability assay

• GDSC uses a different one: the inconsistency is well documented

• Different dose-independent aggregation metrics work differently 
(R2 in the table is based on direct mapping) 

Pilot 1



Is drug diversity 
more important 
than cell diversity? 

Apparently yes.

What does this 
mean for PDM and 
PDO experiments?



Analysis name R2 P-value (R2) Spearman rank 
correlation coefficient

P-value (Spearman rank 
correlation coefficient)

PDX-Only 0.064(0.031) 0.372(0.022)

CCLE-TL 0.042(0.016) 8.01E-02 0.355(0.013) 7.28E-02

gCSI-TL 0.100(0.016) 8.29E-03 0.389(0.017) 7.55E-02

NCI60-TL 0.102(0.013) 5.16E-03 0.407(0.016) 1.43E-03

CTRP-TL 0.092(0.019) 3.35E-02 0.415(0.013) 1.51E-04

GDSC-TL 0.110(0.017) 1.50E-03 0.419(0.013) 7.22E-05

Comparison on PDX Prediction Performance With and 
Without Transfer Learning

PDX-only is the analysis without transfer learning. -TL in analysis name indicates transfer learning from a CCL dataset.

• Mean (standard deviation) of prediction performance is evaluated through 10 times of 10-fold 
cross-validations on PDXs

• Four out of the five transfer learning analyses show a prediction performance statistically 
significantly better than that of PDX-only analysis, evaluated by the p-value of t-test ≤ 0.05

Pilot 1



CANDLE Project
• CANDLE Python Library – make it easy to run on DOE Big Machines, 

scale for HPO, UQ, Ensembles, Data Management, Logging, Analysis

• CANDLE Benchmarks – exemplar codes/models and data 
representing the three primary challenge problems 

• Runtime Software – Supervisor, Reporters, Data Management, Run 
Data Base

• Tutorials – Well documented examples for engaging the community

• Contributed Codes – Examples outside of Cancer, including Climate 
Research, Materials Science, Imaging, Brain Injury

• Frameworks – Leverage of TensorFlow, Keras, Horovod, PyTorch, etc.

• LL Libraries – CuDNN, MKL, etc. (tuned to DOE machines)



Scope of CANDLE workflows

Data Preparation
Batch Normalization
Data Augmentation

Outlier Removal
Scaling/Quantization

Concordance Processing

Model Discovery
Residual Networks

Convolution 

Multitask Networks

Population Based HPO

Training Inference

Outputs

Ensembles

Domain Adaptation

Cross-validation

UQ

Source – Target Pairs 

UQ Sampling

Accuracy / K-rank / R2 

Feature importanceFactorial Design

Learning Curves

Confidence Scoring

Performance Analysis

Transfer Learning

CANDLE

105 – 106

units of work

105 – 107

units of work

106 – 1010

units of work



How are we using Large-Scale Computing
• Deep Sweeps on Features/Feature Combinations
• Recently ran 16K model jobs on Summit

• Hyperparameter Optimization
• Tuning model settings (Big runs on Cori, Theta, Summit, Titan)

• Neural Architecture Search (Model Discovery)
• Big runs on Theta (SC19 Paper)

• Hierarchical Cross Validation Study > 500K models
• Bayesian approach to online learning (accelerated convergence)

• Data Augmentation and Generation Networks
• Exploring strategies for “Low Data” learning

• Uncertainty Quantification
• Bootstrapping, parameter sweeps
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