Cancer Drug Response Prediction

Rick Stevens Argonne National Laboratory The University of Chicago

Crescat scientia; vita excolatur

Machine Learning In Cancer Research

- Cancer Susceptibility
- Cancer Detection and Diagnosis
- Cancer Recurrence
- Cancer Prognosis and Survival
- Cancer Classification and Clustering
- Cancer Drug Response Prediction
- Cancer Genomics Analysis
- Cancer Medical Records Analysis
- Cancer Biology

Deep Learning in Cancer \Rightarrow many Methods

 AutoEncoders – learning data representations for classification and prediction of drug response, molecular trajectories

- VAEs and GANs generating data to support methods development, data augmentation and feature space algebra, drug candidate generation
- CNNs, Attention type classification, drug response, outcomes prediction, drug resistance
- RNNs sequence, text and molecular trajectories analysis

What is Cancer?

- Large number of complex diseases
- Each behave differently depending on cell type from which the tumor originates
 - Age on onset, invasiveness, response to treatment
- Common General Properties
 - Abnormal cell growth/division (cell proliferation)
 - Spread to other regions of body (metastasis)
 - Malignant tumors

50% of Patients do not respond to chemotherapy for some tumors

TRADITIONAL MEDICINE vs. PRECISION MEDICINE

Traditionally, radiation, chemotherapy, and surgery were the only means by which doctors could treat cancer. With precision medicine, doctors use a patient's genes to uncover clues for treating the disease.

BENETICS

- · Gene sequencing
- Locate cancercausing genes

IMMUNOTHERAPY

- Identify ways to customize treatment
- Find ways to turn immune system on
- Personalize treatment with immune-activating drugs

TARGETED THERAPIES

- Drugs turn specific genes on or off
- + TEADTONAL THERAPES

Drug Response is specific to Cancer type and specific genetic variance in each tumor

Green means Sensitive

Red means Resistant

IEEE_J_Biomed_Health_Inform_2015_Sheng.par

PDX models to the rescue

Patient-derived xenograft (PDX) models, however, offer the potential to transform translational oncology ⁵. PDX models are created by transplanting fresh tumour tissues from human patients directly into mice.

How PDX models are made and characterised

PDX tumours have been shown to preserve key features of a specific cancer and these models have been shown to be predictive of clinical outcomes – unlike cell culture models. Furthermore, PDX models have been used to predict biomarkers of drug susceptibility and drug resistance, which is crucial for clinical trial phases of development where multiple drugs fail. They are becoming the preferred preclinical tool to improve the drug development process.

Cancer Organoids

Overarching Goal

A single ML model trained on data from many cancer samples and many drugs that can predict drug response across wide range of tumors and drug combinations

Modeling Cancer Drug Response

gene expression levels **SNPs** protein abundance microRNA % growth

IC50

AUC

GI50

Z-score

Response

methylation

Tumor

Two General Use Cases for Models

Predictive Oncology

- Predicting outcomes of experiments or patient treatments
- Fixed Drugs .. Sweep tumors

• Drug Discovery

- In silico screening novel compounds for activity
- Fixed Tumors .. Sweep drugs
- Validation strategies different
- The models are subtly different
- We can tune models for each case

Uno-MT

RAN	K DI COUN	IT TYPE Pilot 1	
1	58051	Skin_Cutaneous_Melanoma	$DI \Rightarrow dose i$
2	56693	Colon_Adenocarcinoma	
3	56534	Lung_Adenocarcinoma	
4	40203	Kidney_Renal_Clear_Cell_Carcinoma	
5	38921	Ovarian_Serous_Cystadenocarcinoma	CTRP
6	36595	Breast_Invasive_Carcinoma	
			CCLE 56
7	35932	Lymphoid_Leukemia	178
8	27292	Glioblastoma_Multiforme	
9	25044	Lung_Small_Cell_Carcinoma	138
10	20226	Lung_Non-Small_Cell_Carcinoma	
11	19751	Sarcoma	6
12	16862	Pancreatic_Adenocarcinoma	
13	16086	Brain_NOS	
14	15985	Acute_Myeloid_Leukemia	
15	15980	Lung_Squamous_Cell_Carcinoma	
16	15912	Acute_Lymphoblastic_Leukemia	
17	14725	Head_and_Neck_Squamous_Cell_Carcinom	a
18	13719	Uterine_Corpus_Endometrial_Carcinoma	
19	13153	Esophageal_Carcinoma	
20	13060	Lymphoid_Neoplasm_Diffuse_Large_B-ce	11_Lymphoma
21	12744	Ovary_NOS	
ENERGY	NIH) NATIONAL	CANCER INSTITUTE	

 $DI \Rightarrow$ dose independent

Can we build models that are predictive of drug response?

Dose Independent, Top 6. Top21, cancers, Attention MLP (Means from 10-fold CV)

ENERGY NIH NATIONAL CANCER INSTITUTE

True label

Single Drug Response

Top 21 Cancer Types in MD DI formulation

Drug	R^2	MAE	AUC	Accuracy	
Afatinib	0.4369	0.0737	0.9248	0.9679	
Bortezomib	0.3871	0.0752	0.9429	0.9569	
Docetaxel	0.5748	0.1154	0.9158	0.8853	
Doxorubicin	0.3749	0.1103	0.7794	0.7105	
Etoposide	0.3787	0.1108	0.8855	0.8768	
GDC-0941	0.3294	0.0744	0.6924	0.9478	
Navitoclax	0.4329	0.0982	0.9035	0.9295	
Paclitaxel	0.5299	0.1285	0.8471	0.7626	
Selumetinib	0.2944	0.1056	0.8831	0.9115	
5N-38	0.3415	0.1150	0.8269	0.8361	
Temsirolimus	0.2048	0.1136	0.7406	0.8912	
Tipifarnib	0.3187	0.1115	0.8474	0.8981	
Vinorelbine	0.1407	0.1289	0.7605	0.8367	
Vorinostat	0.4041	0.0627	0.9134	0.9532	
mean	0.3678	0.1017	0.8474	0.8832	

Models are best of RF, LGB, GB, LR, etc.; features are RNAseq and D7 descriptors

ENERGY NIH NATIONAL CANCER INSTITUTE

Learning Curve Power Law

It seems that the advent of models that beat the power-law exponent — that get **more data efficient as they learn** — might be an important empirical milestone on that path.

https://arxiv.org/pdf/1712.00409.pdf

Why deep learning

More training data \implies Lower Error

Learning Curves – Variance and Bias

Do we have enough data?

Do we have the right data?

ENERGY NIH NATIONAL CANCER INSTITUTE

Learning Curves

NIH) NATIONAL CANCER INSTITUTE

MAE

ENERGY

Train score

Can we build models that generalize across studies?

UnoMT Multitask Deep Learning Cross-Study Best out of Study R² = 0.61

Table 6. Best cross study validation results with a 3-task UnoMT

		Testing set							
		NC160	CTRP	GDSC	CCLE	gCSI	N/T Cat Acc	Site Acc	Type Acc
Training set	NCI60	R2 = 0.81 MAE = 17.1	R2 = 0.38 MAE = 32.2	R2 = 0.24 MAE = 35.3	R2 = 0.48 MAE = 33.4	R2 = 0.46 MAE = 33.4	99.43%	96.75%	96.97%
	CTRP	R2 = 0.44 MAE = 29.8	R2 = 0.68 MAE = 22.7	R2 = 0.23 MAE = 34.4	R2 = 0.61 MAE = 28.3	R2 = 0.60 MAE = 28.5	99.56%	96.62%	96.58%
	GDSC	R2 = 0.32 MAE = 34.0	R2 = 0.25 MAE = 36.7	R2 = 0.53 MAE = 27.2	R2 = 0.50 MAE = 32.6	R2 = 0.60 MAE = 29.2	99.43%	96.93%	96.97%
	CCLE	R2 = 0.27 MAE = 36.9	R2 = 0.20 MAE = 39.2	R2 = 0.11 MAE = 38.9	R2 = 0.68 MAE = 25.4	R2 = 0.39 MAE = 34.2	99.12%	96.36%	96.36%
	gCSI	R2 = 0.00 MAE = 44.9	R2 = 0.11 MAE = 43.1	R2 = 0.05 MAE = 42.8	R2 = 0.33 MAE = 40.6	R2 = 0.80 MAE = 192	99.43%	96.84%	96.62%

MAE = Mean Absolute Error (in percent growth)

Why is NCI-60 better in the diagonals?

source_scale loss=MSE		Testing set						
		NC160	CTRP	GDSC	CCLE	gCSI		
	NC160	R2 = 0.80 MAE = 18.0	R2 = 0.36 MAE = 32.9	R2 = 0.21 MAE = 36.2	R2 = 0.45 MAE = 34.6	R2 = 0.42 MAE = 35.6		
Training set	CTRP	R2 = 0.39 MAE = 31.3	R2 = 0.67 MAE = 23.3	R2 = 0.19 MAE = 35.4	R2 = 0.58 MAE = 29.4	R2 = 0.56 MAE = 29.3		
	GDSC	R2 = 0.31 MAE = 35.0	R2 = 0.23 MAE = 36.9	R2 = 0.52 MAE = 27.6	R2 = 0.51 MAE = 27.6	R2 = 0.57 MAE = 30.1		
	CCLE	R2 = -0.03 MAE = 46.0	R2 = 0.02 MAE = 44.8	R2 = -0.04 MAE = 43.6	R2 = 0.67 MAE = 25.6	R2 = 0.46 MAE = 33.5		
	gCSI	R2 = -0.07 MAE = 46.0	R2 = -0.01 MAE = 45.6	R2 = -0.06 MAE = 45.7	R2 = 0.30 MAE = 39.9	R2 = 0.78 MAE = 20.01		

Variability in Replicates Sets the R² Ceiling

Dataset	Cells	Drugs	Dose Response Samples	Measured Response Groups	Viability Assay
NCI60 CTRP	60 887 504	52,671 544 24	18,862,308 6,171,005	3,780,148 395,263	CellTiter Glo CellTiter Glo
GDSC gCSI	1,075 409	249 249 16	1,894,212 58,094	225,480 6,455	Syto60 CellTiter Glo

Table 1: Characteristics of drug response datasets included in the cross-study analysis

Table 2: Dose response variability among replicates in the same study

Study	Samples with Replicates	Replicates per Group	Mean Response S.D. in Group	R ² Explaining Response with Group Mean	R ² for Samples with Replicates
NCI60	41.56%	2.62	0.145	0.959	0.931
CTRP	4.09%	2.05	0.188	0.996	0.862
GDSC	2.62%	2.00	0.219	0.996	0.810

Why is Model Transfer from CTRP => GDSC so Poor?

source_scale loss=MSE		Testing set					
		NC160	CTRP	GDSC	CCLE	gCSI	
	NCI60	R2 = 0.80 MAE = 18.0	R2 = 0.36 MAE = 32.9	R2 = 0.21 MAE = 36.2	R2 = 0.45 MAE = 34.6	R2 = 0.42 MAE = 35.6	
Training set	CTRP	R2 = 0.39 MAE = 31.3	R2 = 0.67 MAE = 23.3	R2 = 0.19 MAE = 35.4	R2 = 0.58 MAE = 29.4	R2 = 0.56 MAE = 29.3	
	GDSC	R2 = 0.31 MAE = 35.0	R2 = 0.23 MAE = 36.9	R2 = 0.52 MAE = 27.6	R2 = 0.51 MAE = 27.6	R2 = 0.57 MAE = 30.1	
	CCLE	R2 = -0.03 MAE = 46.0	R2 = 0.02 MAE = 44.8	R2 = -0.04 MAE = 43.6	R2 = 0.67 MAE = 25.6	R2 = 0.46 MAE = 33.5	
	gCSI	R2 = -0.07 MAE = 46.0	R2 = -0.01 MAE = 45.6	R2 = -0.06 MAE = 45.7	R2 = 0.30 MAE = 39.9	R2 = 0.78 MAE = 20.01	

Cross-study Response Consistency

- CTRP and CCLE use the same viability assay
- GDSC uses a different one: the inconsistency is well documented
- Different dose-independent aggregation metrics work differently (R² in the table is based on direct mapping)

Source Study Target Study Overlapping Cell-Drug Groups R2 on AUC R2 on AUC1 R2 on DSS 0.6408CTRP CCLE 2,3380.5944 0.6347 17,259 0.3016 0.0186 0.0062 CTRP GDSC

Table 3: Cross-study response consistency in identical cell-drug pairs

Is drug diversity more important than cell diversity?

Apparently yes.

What does this mean for PDM and PDO experiments?

Comparison on PDX Prediction Performance With and Without Transfer Learning

Analysis name	R ²	P-value (R ²)	Spearman rank correlation coefficient	P-value (Spearman rank correlation coefficient)
PDX-Only	0.064(0.031)		0.372(0.022)	
CCLE-TL	0.042(0.016)	8.01E-02	0.355(0.013)	7.28E-02
gCSI-TL	0.100(0.016)	8.29E-03	0.389(0.017)	7.55E-02
NCI60-TL	0.102(0.013)	5.16E-03	0.407(0.016)	1.43E-03
CTRP-TL	0.092(0.019)	3.35E-02	0.415(0.013)	1.51E-04
GDSC-TL	0.110(0.017)	1.50E-03	0.419(0.013)	7.22E-05

PDX-only is the analysis without transfer learning. -TL in analysis name indicates transfer learning from a CCL dataset.

- Mean (standard deviation) of prediction performance is evaluated through 10 times of 10-fold cross-validations on PDXs
- Four out of the five transfer learning analyses show a prediction performance statistically significantly better than that of PDX-only analysis, evaluated by the p-value of t-test ≤ 0.05

CANDLE Project

• ECP-CANDLE GitHub Organization:

https://github.com/ECP-CANDLE

- **CANDLE Python Library** make it easy to run on DOE Big Machines, scale for HPO, UQ, Ensembles, Data Management, Logging, Analysis
- CANDLE Benchmarks exemplar codes/models and data representing the three primary challenge problems
- Runtime Software Supervisor, Reporters, Data Management, Run Data Base
- Tutorials Well documented examples for engaging the community
- **Contributed Codes** Examples outside of Cancer, including Climate Research, Materials Science, Imaging, Brain Injury
- Frameworks Leverage of TensorFlow, Keras, Horovod, PyTorch, etc.
- LL Libraries CuDNN, MKL, etc. (tuned to DOE machines)

CANDLE

Scope of CANDLE workflows

ERG

How are we using Large-Scale Computing

- Deep Sweeps on Features/Feature Combinations
 - Recently ran 16K model jobs on Summit
- Hyperparameter Optimization
 - Tuning model settings (Big runs on Cori, Theta, Summit, Titan)
- Neural Architecture Search (Model Discovery)
 - Big runs on Theta (SC19 Paper)
- Hierarchical Cross Validation Study > 500K models
 - Bayesian approach to online learning (accelerated convergence)
- Data Augmentation and Generation Networks
 - Exploring strategies for "Low Data" learning
- Uncertainty Quantification
 - Bootstrapping, parameter sweeps

Acknowledgements

Material in this talk comes from Argonne, Oak Ridge, Livermore and Los Alamos national laboratories, National Cancer Institute, Frederick National Laboratory for Cancer Research, Computation Institute, and the University of Chicago

Special thanks to: Gina Tourassi (Oak Ridge) Fred Streitz, Jonathan Allen (Livermore), Frank Alexander (Brookhaven), Marian Anghel (Los Alamos), Eric Stahlberg, Yvonne Evrard, Susan Holbeck, James Doroshow (NCI) Bob Grossman, Monisha Gosh (UChicago) Fangfang Xia, Maulik Shukla,

Tom Brettin,

Emily Dietrich (Argonne)

Acknowledgements

Many thanks to DOE, NSF, NIH, DOD, ANL, UC, Moore Foundation, Sloan Foundation, Apple, Microsoft, Cray, Intel and IBM for supporting my research group over the years

