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AI for Science Townhalls

• Four “Townhalls” aimed at getting input from the DOE community on 
opportunities and requirements for the next 5-10 years in computing 
with a focus on convergence between HPC and AI

• July (Argonne), August (Oak Ridge), September (Berkeley), October 
(Washington)

• Modeled after the 2007 Townhalls that launched the Exascale 
Computing Initiative

• Each meeting covers roughly the same ground, geographically 
distributed to enable local participation

• Applications in science, energy and technology
• Software, math and methods, hardware, data management, 

computing facilities, infrastructure, integration with experimental 
facilities, etc.

• Expect ~200 people per meeting
• Output will be a report to guide strategic planning at Labs and DOE

Organized by Argonne, Oak Ridge and Berkeley with participation from all the 
laboratories.. 



What We are on About at the Townhalls

• AI is transforming our “regular life” world
• AI has tremendous potential to accelerate scientific discovery
• How do we go about organizing an AI for Science initiative
• Capture ideas, problems, requirements and challenges for an AI for 

Science initiative
• What problems could be attacked?
• What data, simulations, and experiments do we need?
• What kind of methods, software and math do we need?
• What kind of computer architectures and infrastructure do we need?



AI complements our Exascale plans

• The emerging platforms at the LCF and NERSC will be excellent 
platforms for machine learning, in particular deep learning training

• The coupling of AI and HPC is a huge opportunity for DOE 
• Many uses of AI couple to experiments in ways that traditional 

modeling and simulation do not
• The DOE experimental community could become major users of the 

DOE HPC facilities
• AI has the potential to accelerate science at all scales
• Future systems directions will be impacted by AI use cases



White House AI Executive Order





Policy Statement

• Artificial Intelligence (AI) promises to drive growth of the United States 
economy, enhance our economic and national security, and improve our 
quality of life. 
• Continued American leadership in AI is of paramount importance to 

maintaining the economic and national security of the United States and to 
shaping the global evolution of AI in a manner consistent with our Nation’s 
values, policies, and priorities. 
• Maintaining American leadership in AI requires a concerted effort to 

promote advancements in technology and innovation, while protecting 
American technology, economic and national security, civil liberties, 
privacy, and American values and enhancing international and industry 
collaboration with foreign partners and allies. 



Five Principles 
• Drive technological breakthroughs in AI across the Federal Government, industry, and 

academia in order to promote scientific discovery, economic competitiveness, and national 
security. 

• Drive development of appropriate technical standards and reduce barriers to the 
safe testing and deployment of AI technologies in order to enable the creation of new AI-related 
industries and the adoption of AI by today’s industries. 

• Train current and future generations of American workers with the skills to develop 
and apply AI technologies to prepare them for today’s economy and jobs of the future. 

• Foster public trust and confidence in AI technologies and protect civil liberties, 
privacy, and American values in their application in order to fully realize the potential of AI 
technologies for the American people. 

• Promote an international environment that supports American AI research 
and innovation and opens markets for American AI industries, while protecting our technological 
advantage in AI and protecting our critical AI technologies from acquisition by strategic competitors and 
adversarial nations. 



What is possible ?



Things we can do in Science with AI now

Learn predictive models from data without relying upon theory or deep 
mechanistic understanding 

Example: predicting materials and chemistry properties

Learn approximate solutions to inverse problems where we have data 
and models are not available or are inefficient

Example: phase retrieval in coherent x-ray imaging 

Generate large collections of synthetic data that models real data
Example: synthetic sky in cosmology



Things We Want To Do With AI In The Future

• Develop methods that can learn from both encoded symbolic theory (e.g. 
QM/GR) and large-scale data so we can leverage the vast theoretical 
knowledge we have accumulated over hundreds of years

• Automate and accelerate discovery from planning, to conjecture, to 
experiment, to confirmation and analysis ⇒ end-to-end automated 
science

• Create an ability to use AI for generating new theories that address the 
problematical areas of existing theories



In Ten Years…
§ Learned Models Begin to Replace Data

–queryable, portable, pluggable, chainable, secure
§Experimental Discovery Processes Dramatically Refactored

–models replace experiments, experiments improve models
§Many Questions Pursued Semi-Autonomously at Scale

–searching for materials, molecules and pathways, new physics
§ Simulation and AI Approaches Merge

–deep integration of ML, numerical simulation and UQ 
§ Theory Becomes Data for Next Generation AI

–AI begins to contribute to advancing theory
§AI Becomes Common Part of Scientific Laboratory Activities

– Infuses scientific, engineering and operations



A Sampling of Science Opportunities



Materials and Chemistry

Metal ions and 
complexes at liquid 

interfaces

Nonequilibrium superconductivity

Tian et al. PRL 2016

§ Design of materials and molecules
§ AI-guided synthesis
– automated design of chemical pathways
– mapping metastable phases
– extracting mechanisms

§ Predictive interfacial transport of ions and charge
§ AI-accelerated ab Initio molecular dynamics
§ Quantification of energy drivers for separations
§ Describing multiscale charge, spin, lattice correlations
§ Exploring energy landscapes in ultrafast, 

nonequilibrium, and driven systems and processes
§ Inverse design, bandstructure engineering
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ML models achieve impressive results for many materials problems

Meredig et al., DOI:10.1039/c8me00012c 



Implications for ML-guided materials design

Uncertainty quantification on top of ML models is crucial to 
evaluating candidates in new regions of design space

ML models are more useful as guides for an iterative 
sequence of experiments, as opposed to single-shot 
screening tools that can reliably evaluate an entire search 
space once and shortlist high-performing materials
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Climate and Biology
§ Accelerated Climate Models (PDE/ML hybrids)

§ Improved integration of remote sensing and ground truthing into 

Climate Models (cloud/precipitation, land cover/biogeochem, sea 

ice/calibration, etc.)

§ Improvement in ARM data pipelines, automated model extraction from 

data, smart data fusion

§ Vast applications in genomics and metagenomics (G ⟹ P)

§ Automation of bioinformatics methods (improved productivity)

§ Automating hypothesis formation in biology (causal analysis)

§ Forward design of novel pathways, proteins, regulons, operons, 

organisms, etc. for secure biodesign

§ Anomaly detection (discovery in sequencing, biosecurity, etc.)





High Energy Physics
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AI applications in an “end-to-end” Cosmic Frontier 
application: 1) GANs for image emulation, 2) GP and DL-
based emulators for summary statistics, 3) CNN-based image 
classification, 4) AI-based photometric reshift estimation, 5) 
Likelihood-free methods for inference [Work performed under 
the Argonne-led SciDAC-4 project:  “Inference and Machine 
Learning at Extreme Scales”]

Energy/Intensity Frontier:
§ Search for Beyond the Standard Model (BSM) physics 

through AI-driven anomaly detection
§ AI-reduced uncertainties to enable precision electroweak 

measurements for BSM clues 
§ Generative Adversarial Networks (GANs) for large-scale 

Large Hadron Collider detector simulation

Cosmic Frontier – AI in end-to-end application:
§ Precision Cosmic Microwave Background emulation – AI 

simulation speed-up of a factor of 1000
§ Search for strong lensing of galactic sources for precision 

cosmology measurements using AI classification, 
regression, and GANs for image generations

§ AI-based Photometric Redshift Estimation
§ Combination of AI methods to enable searches for hidden 

space variables







Connecting HPC and AI

§ Steering of simulations
§ Embedding simulation into ML methods
§ Customized computational kernels 
§ Tuning applications parameters
§ Generative models to compare with simulation
§ Student (AI) Teacher (Sim) models ⟹learned functions
§ Guided search through parameter spaces
§ Hybrid architectures HPC + Neuromorphic
§ Many, many more

In addition to partnerships in AI applications, there are considerable 
opportunities in foundational methods development, software and software 
infrastructure for AI workflows and advanced hardware architectures for AI, 
below we highlight some ideas in the HPC + AI space

Generative  Models

AI Accelerators



AI at Argonne: Broad Span of Scientific Targets

Strong and weak lensing 
in sky survey data

Prediction of antimicrobial 
resistance phenotypes

Prediction of radiation 
stopping power

Identification and tracking 
of storms

Parameter extraction in 
atom probe tomography

Learning for dynamic 
sampling in spectroscopy

Structure-property-process 
triangle in additive manufact.

Vehicle energy 
consumption prediction

Photometric red shift 
estimation

New materials for efficient 
solar cells

Cosmic Microwave 
Background emulation

Enhancement of noisy 
tomographic images

Nowcasting with 
convolutional LSTMs

Efficient climate model 
emulators

Defect-level prediction in 
seminconductors

Flying object detector for 
edge deployment

Discovery of new energy 
storage materials

Reduced order modeling 
of laser sintering



Building the AI Environment for Science



Foundations Mathematics, algorithms; general AI, reinforcement learning, 
uncertainty quantification, explainability, etc.

Hardware
Advanced hardware to support AI. Evaluation of new 
architectures and systems; exploration of neuromorphic 
and quantum as long term accelerators for AI.

Learning systems
AI software. Software infrastructure for managing data, 
models, workflows etc., and for delivering AI capabilities 
to 1,000s of scientists and engineers.

Applications AI applications across science and engineering. Transformative 
approaches to simulation and experimental science.

AI for Science Requires 
New Research and Infrastructure



Infrastructure for AI-enabled Science
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DLHub

xDF

xDF Connect

CANDLEfuncX

ParslSwift

DeepHyper

Globus

Waggle

Ripple

AutoMOMML

Petrel



DLHub: Organizing and Serving Models
https://www.dlhub.org

§ Collect, publish, categorize models

§ Serve models via API with access controls 

to simplify sharing, consumption, and 

access

§ Leverage  ALCF resources and prepare for 

Exascale ML

§ Deploy and scale automatically

§ Provide citable DOI for reproducible 

science

Argonne Advanced Computing LDRD

Cherukara et al.

Models and Processing Logic as a Service

Ward et al.

Input

Output

Energy Storage TomographyX-Ray Science

TomoGAN: Liu et al.



CANDLE: Exascale Deep Learning Tools
Deep Learning Needs Exascale
§ Automated model discovery

§ Hyper parameter optimization

§ Uncertainty quantification

§ Flexible ensembles

§ Cross-Study model transfer

§ Data augmentation

§ Synthetic data generation

§ Reinforcement learning

https://github.com/ECP-CANDLE



Scope of CANDLE workflows

Data Preparation
Batch Normalization
Data Augmentation

Outlier Removal
Scaling/Quantization

Concordance Processing

Model Discovery
Residual Networks

Convolution 

Multitask Networks

Population Based HPO

Training Inference

Outputs

Ensembles

Domain Adaptation

Cross-validation

UQ

Source – Target Pairs 

UQ Sampling

Accuracy / K-rank / R2 

Feature importanceFactorial Design

Learning Curves

Confidence Scoring

Performance Analysis

Transfer Learning

CANDLE



§ Leverage DOE expertise in automatic 
differentiation, symbolic computing and optimization 
to ensure that machine learning for science is 
forward looking, methods are robust and models 
interpretable

§ Many facets relevant to science 
– Integration of symbolic computing with machine learning

– Prediction and inference of spatio-temporal processes

– Derivatives for training, sensitivity analysis, optimization, 

and UQ

– Rapid data analysis to reduce volume or identify features of 

interest

– Variety of new approaches to inference and UQ

– Identify and account for uncertainty in data sources 

and computations

Future Directions in Foundations 



Methods Innovation, one page agenda J

• Data efficient learning. “Low data”. One shot, few shot learning
• Improved neural architecture search. Lottery tickets and sparsity.
• Online learning and incremental training. Active learning.
• Representation learning in novel “scientific” spaces
• UQ and confidence estimates. Interpretability.
• Integration of symbolic computing and deep learning. Synthesis learning.
• Beyond NLP and CV towards concepts directly needed by science. 
• Generative methods in scientific and engineering domains.
• Inverse methods and systems that input data and output rules.



We are starting out in a good place



Aurora: HPC and AI
>> Exaops/s for AI

Architecture supports three types of computing
§ Large-scale Simulation (PDEs, traditional HPC)

§ Data Intensive Applications (scalable science pipelines)

§ Deep Learning and Emerging Science AI (training and inferencing)



Specialized hardware is emerging that will be 
10x – 100x the performance of 

general purpose CPU and GPU designs for AI

US VCs investing >$4B in startups 
for AI acceleration

Which platforms will be good for science?







AI Accelerator Testbed
Engaging the community to understand and improve specialized AI 
hardware for science

Dozens of proposed AI accelerators promise 
10x - 1000x acceleration for AI workloads. AI testbed will:
1. Provide an open and unbiased environment for 

evaluation of AI accelerator technologies
2. Disseminate information about use cases, software, 

performance on test problems
3. Support collaborations with AI technology developers, 

academics, commercial AI, DOE labs

https://github.com/basicmi/AI-Chip

Device

Staged evaluation enables identification 
of most promising systems for science

Subrack Rack



AI Driven Experimental Science



The ATOM Platform
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Active Learning Drug Discovery Framework

Working 
Compound 

Library

Retrain property prediction 
models

Design Criteria

Human-relevant 
assays, complex 
in vitro models
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Simulation

Active learning 
decides if/when a simulation or 

experiment is needed to improve 
or validate models

Generative 
Molecular Design

proposes new molecules with 
optimized properties 

Jim Brase (LLNL) and the ATOM Consortium



Simulation: Estimation of Properties
Update ML

Models

Active 
Learning 

Prioritization

ML Property Prediction Pipeline

ML Generator of Candidates

Filter
Candidates

ML

UQ Scoring 
and 

Optimization

Experiment: Estimation of Properties

Layered workflow combining AI, HPC and HTS

Pure ML “constant time” (fast loop) Mixed/Variable time (slow loop)



Common AI/ML
Methods

Data and Computing
Infrastructure

Organism
Design

Polymer
Design

Energy
Materials

Protein
Design

Genetically
Engineered
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AI Driven Autonomous Laboratory Cluster







Overall Lessons Learned
§ Aggregation, integration, normalization and curation of data is critical

– Assay methodology and interpretation of responses is fundamental to 
understanding modeling performance

§ Impact of data scale and data quality are deeply intertwined
– Study design matters
– Variety of approaches are needed

§ Model target use matters on validation strategy and tuning
– We can optimize model performance for different use cases

§ Large-scale computing enables us to dive deep on some questions
– Impact is more confidence in the modeling choices, and deep 

understanding of alternatives
§ Frequent meetings and interactions (Hackathons) are critical

– Bridging the language and scientific culture differences requires time

45

Pilot 1




