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Mutations in DNA

• External agents such as external electric fields, or 

other carcinogenic compounds are known to 

facilitate DNA mutations[1]

• … But what about spontaneous mutations?
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• Protons obey the laws of quantum theory, behaving

like ‘wave packets’.

• Due to the quantum-mechanical tunnelling effect,

there is always a small probability of proton transfer

within any given base-pair.

‘…this transfer of proton over distances less than 1 
A may be the driving force for genetic mutations 

in all living organisms…’ – Löwdin[2]

Watson-Crick Base-Pairs 
and Löwdin’s Hypothesis

Canonical

‘Rare’ Tautomer

3. [2] Löwdin, Per-Olov. "Proton tunneling in DNA and its biological implications." Reviews of Modern Physics 35.3 (1963): 724.



Experimental Evidence and Previous Simulation

• DNA polymerase caught red-handed!

• Structural evidence of a C:A mismatch

within crystallised DNA polymerase

• An overall G:C à A:T mutation bias has

been reported in a variety of organisms

QM-only gas-phase studies
• Proton transfer in G:C is energetically more favourable than in A:T[3]

• Double proton transfer; step-wise or concerted mechanism? [4]

• Little to no quantification of errors, due to lack of replicas

• A gas-phase base-pair is an idealised structure – is it truly 

representative?

• Provide a good starting point
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[3] Jacquemin, Denis, et al. "Assessing the importance of proton transfer reactions in 
DNA." Accounts of chemical research 47.8 (2014): 2467-2474.
[4 ]Sekiya, H., & Sakota, K. (2008). Excited-state double-proton transfer in a model DNA 
base pair: Resolution for stepwise and concerted mechanism controversy... Journal of 
Photochemistry and Photobiology C: Photochemistry Reviews, 9(2), 81-91.



A realistic model; 
solvated, large enough 
DNA sample, >10,000 

atoms 

Proton transfer is both 
a bond breaking/ 

forming effect

Requires quantum 
mechanics (QM) to 
model: Expensive at 

high accuracy

DNA is a large, complex 
biomolecule molecule

Use forcefield 
molecular mechanics 

(MM): Computationally  
cheaper

We can utilise both of 
these methods 

simultaneously[5]: 
(QM/MM)

MMQM

MM

Reproducibility?
Considerations when 

modelling aqueous DNA

5. [5] Lu, You, Zhenggang Lan, and Walter Thiel. "Hydrogen bonding regulates the monomeric nonradiative 
decay of adenine in DNA strands." Angewandte Chemie International Edition 50.30 (2011): 6864-6867.



* Snapshots are chosen on an 
average base-pair distance criteria

25 QM/MM reaction pathways 
mapped with nudged elastic 

band per base-pair

Modelling Proton Transfer: Our Multiscale Workflow

a) MD Code: NAMD
AMBER parmbsc1 force field 

at 300 K, 1 atm. 10 replicas 

of 10 ns simulation to 
thermalize DNA effectively.

b) QM/MM Code: ChemShell
Linking NWChem (QM) with DL-POLY 

(MM). Ensemble QM/MM, using 

configurations drawn from MD*. 25 
replicas for a given base-pair.

c) QM Code: NWChem
One base pair (~30 atoms).

QM approximation:

B3LYP+XDM/aug-cc-pvdz
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Advantages to using 
Ensemble QM/MM

• Inclusion of explicit solvation and DNA
structure - more realistic than gas-phase!

• Observe multiple reaction paths for the
same base-pair

• Determine the probability of each
pathway occurring

• Comment on the statistical variance of
the rates for each pathway
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• The most probable type of proton 

transfer in G:C is step-wise, 80% of the 

time

• Step-wise, two transition states and an 

intermediate

Step-Wise Double Proton 
Transfer in G:C

The reaction coordinate for the step-wise double proton transfer mechanism 
in the G:C base-pair. Error bars are standard deviation. Data points calculated 
from 20 replicas out of 25 total
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Step-Wise Double Proton 
Transfer in G:C

• Rate determining step is k1f , many 

orders of magnitude slower than k1r

• The use of ensemble QM/MM gives 

insight to the statistical variance

• The second step is much closer to 

equilibrium than the first

• Tautomer has a lifetime of ~50 fs (1/ k1r)
The normalized histogram of log proton transfer rates for the step-wise double proton 
transfer mechanism in the G:C base-pair

i) G:C -> G+:C-(Int)

ii) G+:C-(Int) -> G*:C*
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Step-Wise Double Proton 
Transfer in G:C

• Assuming;
• Genome has 100% G:C content
• Every tautomerism leads to mismatch 

• Gtaut = 0 – 114  base-pairs per-genome

• 1 in 3.8 x 10-8 mutations per nucleotide site.

• This value is within the estimation of mutation 
rate per nucleotide in humans (10-11/10-8) [6]

( 1 )
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[6] Nachman, Michael W., and Susan L. Crowell. "Estimate of the 
mutation rate per nucleotide in humans." Genetics 156.1 (2000): 297-304.



Conclusions
• Proton transfer in biological systems is very sensitive to its 

environment, necessitating multiscale modelling

• Multiple reaction pathways for each base-pair are observed, 

with varying probabilities

• G:C double proton transfer 96% of the time
• A:T single proton transfer 36% of the time

• The frequency of a tautomer in human genome is  < 0.001 %

• The life-times of the tautomers are fs, while DNA unwinding 

occurs on the ns scale 
12.
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