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MOTIVATION (1): CRYO-EM – AN ADVANCED TOOL FOR 
STRUCTURAL BIOLOGY
§ Larger bio-assemblies are easier to probe with 

cryo-EM

– Atomic resolution structures for large proteins 

from frozen hydrated samples

– Fills a gap for structures that are 

difficult/recalcitrant to crystallography and NMR 

(esp. membrane proteins)

§ Rapid progress enabled by digital electron detector 

technology, new algorithms for image analysis

§ Flexible regions in proteins are often challenging to 

characterize Merk et al. Cell 165, 1698–1707, June 16, 2016
Nogales, Nature Methods, 2016, 13, 24
Mitrea, Kriwacki et al. Nat. Chem. Biol. (2019)



MOTIVATION (2): LOW RESOLUTION CRYO-EM   
CONSEQUENCE OF NOT USING ALL AVAILABLE DATA?  

§ From collected data, only a partial set is 
used for cryo-EM reconstruction:
– 20-40% of data can be “ignored” for lack 

of clarity in images

§ Is this usable data? 
– image processing ideas have been able 

to use both model based and model free 
techniques to reconstruct

§ Lacking key tools for “building in” resolution:
– Generative models for cryo-EM data from 

volumetric representations
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OUTLINE

§ Building a generative model for volumetric data 

from cryo-EM:

– Fluctuating finite element analysis (FFEA)

– Generating 2D projections from FFEA 

simulations

§ Automatically convert between all-atom and 

volumetric representations:

– Machine learning determination of high 

flexibility regions 

§ Bayesian fits to 2D projections – and evaluate 

with cryoEM data

4



FLUCTUATING FINITE ELEMENT ANALYSIS (FFEA) 
§ FFEA simulations represent proteins as visco-elastic 

continuum solids

– a 6-12 LJ potential with repulsive potential that 

is proportional to the overlapping volume

– specific interactions can be defined w/ 

precomputed potentials 
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WORKFLOW FOR GENERATING 2D PROJECTIONS 
FROM FFEA SIMULATIONS

§ A reconstructed EM model with improved resolution

§ Subset of conformations (from MD) à mapped to EM data
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FFEA GENERATED CONFORMATIONS ARE STABLE AT 
SHORTER TIMESCALES 

§ FFEA Simulations of beta-galactosidase cryo-EM map derived at 8 Å resolution
– Additional resolutions also give similar results (although with higher RMSD) 

§ All-atom MD simulations also show stable RMSD (shorter timescales)
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BAYESIAN INFERENCE (PSEUDO-ATOM METHOD)
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§ Joubert and Habeck used 3D Gaussian 
mixture models (GMMs) to a 2D mixture 
model:

– evaluate this two-dimensional mixture 

model on a two-dimensional grid 

– Two stages: initial coarse-atom generation 

stage, refinement stage to “add” more 

atoms

§ Our approach uses FFEA generated 
conformations to replace the initial and 
refinement stages

– Bayesian inference used only for model 

evaluation on 3D grid 



FFEA GENERATED CONFORMATIONS PROVIDE CLASS 
REPRESENTATIVES …

§ FFEA simulations are used to generate 2D 
images with different angle settings
– currently generated using random 

angles (similar to pseudo-atom 
method)

– experimental settings can be used to 
guide the generation process

§ Noise (in pixels) – representative of data 
acquisition set to zero (for now)
– could be modeled as perturbations to 

the generated data
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20 largest populated, 2D class averages from the 
FFEA simulated ensembles. Each of these 
represents an average from at least 100 
conformations FFEA-generated 3D volumes. 
(Summary of largest variations are shown next.) 



… CLASS REPRESENTATIVES IMPROVE AGREEMENTS 
BETWEEN SAXS/SANS DATA

§ fitting to SAXS data, both FFEA and MD show similar profiles

§ Regions with higher flexibility in protein structure are also regions where fit to experimental 

cryo-EM is not best (yellow) 
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SUMMARY
§ Low resolution in Cryo-EM data is an important problem

– FFEA coupled to MD simulations allowed us to explore states that may be represented 

in the imaging data, but not necessarily explained 

– Initial results seem promising – improves agreement with experimental SAXS/SANS 

data

§ Complementary to a number of techniques:

– will have to quantify improvement within this context

– improvement in simulation run times

§ Existing proteins with well-defined structures help in modeling:

– Nf1 protein (collaboration with D. Esposito, A. Stephen, M. Sherekar, S. Subramanyam, 

et al at Frederick National Lab) 
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FURTHER WORK
§ Improve representation for proteins in FFEA:
– electrostatics (from APBS or similar) 
– computing solvent interactions (important for SAXS/SANS)

§ Switching between all-atom and continuum representations: 
– ML techniques (including deep learning) 
– local modeling of loops and other flexible regions

§ Scalability and testing of FFEA:
– Adaptive meshing/ areas which have less data/ certainty vs. more data
– modeling large bio-molecular assemblies with FFEA
– docking small molecules and other interactions
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