Dynamics of Memory Stem Cells

Becca Asquith

BACKGROUND

T cell Immune Memory

Imperial College

London

How is immune memory maintained for decades?

Hypothesis: T memory stem cells

Imperial College London

London A candidate for memory stem cells: T_{SCM} cells

2-3% of PBMC

	(
	CD45RA	+	+	-	-	+
	CD45RO	-	-	+	+	-
	CCR7	+	+	+	-	-
	CD62L	+	+	+	-	-
	CD28	+	+	+	+/	-
	CD27	+	+	+	+/	-
	IL-7Rα	+	+	+	+/	-
	CXCR3	-	+	+	-	-
	CD95	-	+	+	+	+
	CD11a	-	+	+	+	+
	IL-2Rβ	-	+	+	+	+
	CD58	_	+	+	+	+
	CD57	-	-	-	+/	+

T_{SCM} cells: requirements for "stemness"

Multipotency Self-renewal Clonal longevity

Are T_{SCM} dynamics in healthy humans compatible with their putative role as memory stem cells?

METHODS

Busch et al Nature Prot.

death+differentiation rate

5 healthy subjects.7 weeks heavy water labelling.

CD4⁺ Naive T cells CD4⁺ T_{SCM} cells

CD8⁺ Naive T cells CD8⁺ T_{SCM} cells

Method 2: telomere length analysis

∆ Tel (bp) 1183 823

Imperial College Method 3: mechanistic models

Basic model

$$\dot{T}_N = (p_n - d_n - \Delta)T_N$$
$$\dot{T}_{SCM} = \Delta 2^k T_N + (p_s - d_s)T_{SCM}$$

$$\dot{F}_{TN} = p_n c U(t) - \left(d_n^* + \Delta\right) F_{TN}$$

$$\dot{F}_{TSCM} = \left(2^k - 1\right) c U(t) \frac{\Delta T_N}{T_{SCM}} + \frac{\Delta T_N}{T_{SCM}} F_{TN} + p_s c U(t) - d_s^* F_{TSCM}$$

Imperial College Basic model for telomeres

de Boer & Neese. JI 1998

RESULTS

Kinetic structure of T_{SCM} pool?

Imperial College

Kinetic structure of T_{SCM} pool?

Imperial College

Half-life of a T_{SCM} clone

Imperial College

Imperial College London extra data set: YFV

Silvia A. Fuertes Marraco,^{1,2} Charlotte Soneson,³ Laurène Cagnon,² Philippe O. Gannon,² Mathilde Allard,² Samia Abed Maillard,² Nicole Montandon,² Nathalie Rufer,² Sophie Waldvogel,⁴ Mauro Delorenzi,^{1,2,3} Daniel E. Speiser^{1,2}*

www.ScienceTranslationalMedicine.org 8 April 2015 Vol 7 Issue 282 282ra48

	half-life T _{scm1} [years]	half-life T _{SCM2} [years]
DW01	13.92 (2.26-20.68)	0.02 (0.02-6.74)
DW04	4.59 (2.13-20.41)	0.14 (0.01-2.79)
DW10	9.09 (2.33-16.50)	0.69 (0.05-0.77)
DW11	8.39 (3.75-17.01)	0.9 (0.03-3.98)
MEDIAN	8.74 (2.30-18.71)	0.41 (0.02-3.39)

too stochastic?

Imperial College London

degree of self-renewal

how long a cell lives without dying or differentiating

Imperial College

London

degree of self renewal =	1
degree of sent tenewar	input rate
_	1
=	$\overline{d-p}$

id	Self-renewal	
iu iu	[d]	
DW01	7300	
	(1800,12500)	
DW04	2400	
	(1200,5300)	
DW10	4800	
	(1400,8400)	
DW11	4400	
	(1700,9500)	
MEDIAN	4600	
	(1500,8900)	

15% of our lifespan

Busch et al Nature 2015 (mice)

SUMMARY SO FAR

- heterogeneous
- Slow subpop:
 - $\tau_{1/2} \approx 9$ years
- nearly selfrenewing (>1000d)

T_{SCM} dynamics in healthy humans are compatible with their putative role as stem cell memory cells

next steps

Acknowledgements

Imperial College Pedro Costa del Amo Julio Lahoz Beneytez Lies Boelen St Georges Derek Macallan Raya Ahmed Yan Zhang

Cardiff Kristin Ladell David Price Laureline Rodger Duncan Baird

<u>University of Lausanne</u> Silvia A. Fuertes Marraco

Bloodwise

Medical Research

Council

Investigator

MR

We are looking for a theoretician (background maths/ physics/ bioinformatics or similar) to join our group

> Please see jobs.ac.uk or Imperial webpages for details

MED01450

b.asquith@ic.ac.uk

Gated on CD45RO- CD27bright CCR7+ CD95+

Pheno: CD28+ CD45RA+ CD57- CD127+

	Proliferation rate (d-1)
Slow TSCM	0.002
Fast TSCM	0.015
Naïve (this study)	0.0005
Naïve (9w water)	0.0004
Memory (24h glu)	0.02
Memory (9w water)	0.006

Naïve < slow TSCM < fast TSCM < memory

London Purity checks CD4+ TSCMs

TSCM purity_130617KL.jo

NB v low event #

Imperial College London Purity check CD8+ TSCM

