A novel multi-scale, multi-compartment model of oxygen transport: Towards *in-silico* clinical trials in the entire human brain

Wahbi El-Bouri, <u>Yun Bing</u>*, Tamas Jozsa and Stephen Payne Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK *email: yun.bing@eng.ox.ac.uk

Motivation

- Stroke is one of the leading causes of death and disability worldwide
- Ischaemic stroke accounts for 75% of all stroke
- 2/3 of the patients exhibit no-reperfusion after thrombectomy treatment
- Experimental stroke models
 - Fundamental differences: structural and functional organisations, vascular anatomy and immune system
 - Limited therapies translated into clinical treatments
- Computational stroke models

Aims

- INSIST project (*In-silico* trials for treatment of acute ischaemic stroke)
 - build an *in silico* environment for simulating and evaluating novel treatments (e.g. thrombectomy) for acute ischaemic stroke

- This project
 - develop statistically accurate multi-scale flow and oxygen models of the full human brain
 - incorporate active regulation of the microvasculature into full brain perfusion and oxygen models
 - blood flow aspect of this project is also presented in this conference by Tamas Jozsa in the morning Organ Modelling and Simulation session on the 25th Sep.

Overview

Overview

Homogenisation

Macro-scale

- Homogenisation concerns finding the macro-scale properties of a material that has heterogeneities on the microscopic scale.
- Here, we extend the work of Shipley and Chapman¹ by reiterating the homogenisation procedure over multiple spatial scales.

¹ Shipley and Chapman (2010) Bull Math Biol

Homogenisation

El-Bouri and Payne (2015) J Theor Biol El-Bouri and Payne (2018) NeuroImage

• Arteriole
$$\frac{\partial c_a^{(0)}}{\partial t} + \left(\langle \boldsymbol{u}_a^{(0)} \rangle_a \cdot \nabla_x c_a^{(0)} \right) = -\gamma_a \frac{S_a}{V_a} \left(c_a^{(0)} - c_t^{(0)} \right) - \beta_{ac} \left(p_a^{(0)} - p_c^{(0)} \right) c_a^{(0)}$$
• Capillary
$$\frac{\partial c_c^{(0)}}{\partial t} + \left(\langle \boldsymbol{u}_c^{(0)} \rangle_c \cdot \nabla_x c_c^{(0)} \right) = \nabla_x \cdot \left[\underline{\boldsymbol{D}_c^{dif}} \nabla_x c_c^{(0)} \right] - \gamma_c \frac{S_c}{V_c} \left(c_c^{(0)} - c_t^{(0)} \right) + \beta_{ac} \left(p_a^{(0)} - p_c^{(0)} \right) c_a^{(0)} + \beta_{cv} \left(p_v^{(0)} - p_c^{(0)} \right) c_c^{(0)}$$
• Venule
$$\frac{\partial c_v^{(0)}}{\partial t} + \left(\langle \boldsymbol{u}_v^{(0)} \rangle_v \cdot \nabla_x c_v^{(0)} \right) = \beta_{cv} \left(p_c^{(0)} - p_v^{(0)} \right) c_c^{(0)}$$

$$\frac{\partial c_t^{(0)}}{\partial t} = \nabla_x \cdot \left[\underline{D_t^{dif}} \nabla_x c_t^{(0)} \right] + \gamma_c \frac{S_c}{V_t} \left(c_c^{(0)} - c_t^{(0)} \right) + \gamma_a \frac{S_a}{V_t} \left(c_a^{(0)} - c_t^{(0)} \right) - \frac{Mc_t}{c_{50} + c_t}$$

• Arteriole
$$\frac{\partial c_{a}^{(0)}}{\partial t} + \left(\langle u_{a}^{(0)} \rangle_{a} \cdot \nabla_{x} c_{a}^{(0)} \right) = -\gamma_{a} \frac{S_{a}}{V_{a}} \left(c_{a}^{(0)} - c_{t}^{(0)} \right) - \beta_{ac} \left(p_{a}^{(0)} - p_{c}^{(0)} \right) c_{a}^{(0)}$$
• Capillary
$$\frac{\partial c_{c}^{(0)}}{\partial t} + \left(\langle u_{c}^{(0)} \rangle_{c} \cdot \nabla_{x} c_{c}^{(0)} \right) = \nabla_{x} \cdot \left[\underline{D}_{c}^{dif} \nabla_{x} c_{c}^{(0)} \right] - \gamma_{c} \frac{S_{c}}{V_{c}} \left(c_{c}^{(0)} - c_{t}^{(0)} \right) + \beta_{ac} \left(p_{a}^{(0)} - p_{c}^{(0)} \right) c_{a}^{(0)} + \beta_{cv} \left(p_{v}^{(0)} - p_{c}^{(0)} \right) c_{c}^{(0)}$$
• Venule
$$\frac{\partial c_{v}^{(0)}}{\partial t} + \left(\langle u_{v}^{(0)} \rangle_{v} \cdot \nabla_{x} c_{v}^{(0)} \right) = \beta_{cv} \left(p_{c}^{(0)} - p_{v}^{(0)} \right) c_{c}^{(0)}$$

$$\frac{\partial c_t^{(0)}}{\partial t} = \nabla_x \cdot \left[\underline{D_t^{dif}} \nabla_x c_t^{(0)} \right] + \gamma_c \frac{S_c}{V_t} \left(c_c^{(0)} - c_t^{(0)} \right) + \gamma_a \frac{S_a}{V_t} \left(c_a^{(0)} - c_t^{(0)} \right) - \frac{Mc_t}{c_{50} + c_t}$$

• Arteriole
$$\frac{\partial c_a^{(0)}}{\partial t} + \left(\langle \boldsymbol{u}_a^{(0)} \rangle_a \cdot \nabla_x c_a^{(0)} \right) = -\gamma_a \frac{S_a}{V_a} \left(c_a^{(0)} - c_t^{(0)} \right) - \beta_{ac} \left(p_a^{(0)} - p_c^{(0)} \right) c_a^{(0)}$$

• Capillary
$$\frac{\partial c_c^{(0)}}{\partial t} + \left(\langle \boldsymbol{u}_c^{(0)} \rangle_c \cdot \nabla_x c_c^{(0)} \right) = \nabla_x \cdot \left[\underline{\boldsymbol{D}_c^{dif}} \nabla_x c_c^{(0)} \right] - \gamma_c \frac{S_c}{V_c} \left(c_c^{(0)} - c_t^{(0)} \right) + \beta_{ac} \left(p_a^{(0)} - p_c^{(0)} \right) c_a^{(0)} + \beta_{cv} \left(p_v^{(0)} - p_c^{(0)} \right) c_c^{(0)}$$

• Venule

$$\frac{\partial c_{v}^{(0)}}{\partial t} + \left(\langle \boldsymbol{u}_{v}^{(0)} \rangle_{v} \cdot \nabla_{x} c_{v}^{(0)} \right) = \boldsymbol{\beta}_{cv} \left(p_{c}^{(0)} - p_{v}^{(0)} \right) c_{c}^{(0)}$$

$$\frac{\partial c_t^{(0)}}{\partial t} = \nabla_x \cdot \left[\underline{D_t^{dif}} \nabla_x c_t^{(0)} \right] + \gamma_c \frac{S_c}{V_t} \left(c_c^{(0)} - c_t^{(0)} \right) + \gamma_a \frac{S_a}{V_t} \left(c_a^{(0)} - c_t^{(0)} \right) - \frac{Mc_t}{c_{50} + c_t}$$

• Arteriole
$$\frac{\partial c_{a}^{(0)}}{\partial t} + \left(\langle \boldsymbol{u}_{a}^{(0)} \rangle_{a} \cdot \nabla_{x} c_{a}^{(0)} \right) = -\gamma_{a} \frac{S_{a}}{V_{a}} \left(c_{a}^{(0)} - c_{t}^{(0)} \right) - \beta_{ac} \left(p_{a}^{(0)} - p_{c}^{(0)} \right) c_{a}^{(0)}$$
• Capillary
$$\frac{\partial c_{c}^{(0)}}{\partial t} + \left(\langle \boldsymbol{u}_{c}^{(0)} \rangle_{c} \cdot \nabla_{x} c_{c}^{(0)} \right) = \nabla_{x} \cdot \left[\underbrace{\boldsymbol{D}_{c}^{dif}}_{C} \nabla_{x} c_{c}^{(0)} \right] - \gamma_{c} \frac{S_{c}}{V_{c}} \left(c_{c}^{(0)} - c_{t}^{(0)} \right) + \beta_{ac} \left(p_{a}^{(0)} - p_{c}^{(0)} \right) c_{a}^{(0)} + \beta_{cv} \left(p_{v}^{(0)} - p_{c}^{(0)} \right) c_{c}^{(0)}$$
• Venule
$$\frac{\partial c_{v}^{(0)}}{\partial t} + \left(\langle \boldsymbol{u}_{v}^{(0)} \rangle_{v} \cdot \nabla_{x} c_{v}^{(0)} \right) = \beta_{cv} \left(p_{c}^{(0)} - p_{v}^{(0)} \right) c_{c}^{(0)}$$

$$\frac{\partial c_t^{(0)}}{\partial t} = \nabla_x \cdot \left[\underline{D_t^{dif}} \nabla_x c_t^{(0)} \right] + \gamma_c \frac{S_c}{V_t} \left(c_c^{(0)} - c_t^{(0)} \right) + \gamma_a \frac{S_a}{V_t} \left(c_a^{(0)} - c_t^{(0)} \right) - \frac{Mc_t}{c_{50} + c_t}$$

- We used statistically accurate microvascular models^{1,2} to find the necessary parameters required by the equations.
- A range of different vasculature was selected randomly.
- Distribution of each parameter was obtained accounting for the variability of the physiological values.

¹ El-Bouri and Payne (2015) J Theor Biol
 ² El-Bouri and Payne (2016) Microcirculation

	$\frac{V_{vessel}}{V_{block}} \ (\%)$	$rac{V_{vessel}}{S_{vessel}}$ (µm)	$\frac{S_{vessel}}{V_{block}} \left(\frac{mm^2}{mm^3}\right)$	$\frac{S_{vessel}}{V_{vessel}} \left(\frac{mm^2}{mm^3}\right)$	$\frac{S_{vessel}}{V_{Tblock}} \left(\frac{mm^2}{mm^3}\right)$
Arteriole	1.814 ± 0.131	5.320 <u>+</u> 0.168	3.406 <u>+</u> 0.155	188.232 <u>+</u> 6.179	3.526 <u>+</u> 0.279
Capillary*	1.415	1.624	8.702	615.579	9.001

* Capillary parameter logarithm values exhibit normal distribution; here we only report the natural mean values for easy comparison.

		$\frac{V_{vessel}}{V_{block}} (\%)$	$rac{V_{vessel}}{S_{vessel}}$ (μm)	$\frac{S_{vessel}}{V_{block}} \left(\frac{mm^2}{mm^3}\right)$
Literature	Cassot <i>et al.</i> (2006)	1.4 ⁺ /2.44(1-4)	4.55	5.37
	Lauwers <i>et al.</i> (2008)	1.4-2 ¹ /2.69(2-4)	2.3	11.74
	Risser <i>et al.</i> (2009)	2.74	3.51	7.87
Sim	Capillary	1.415	1.624	8.702
	Capillary & arteriole	3.229	3.250*	6.372*

^T values concerning only the capillaries (vessel diameter $\leq 10\mu m$) * calculated with arterials accounting 440% of the values and capillary account

* calculated with arteriole accounting 44% of the volume and capillary accounting 56% of the volume (Risser *et al.*, Int J Devl Neuroscience, 2009)

Simulation setup

- Model implemented for the grey matter on a unit cube through FEM using FEniCS¹
 FENICS¹
- A polynomial based manufactured solution was used to test the implementation and find the optimum numerical setup
- Physiological values were then used to perform the simulation

¹ A. Logg and G. N. Wells (2010) ACM TOMS

Simulation setup

- Boundary conditions:
 - Arteriole compartment

Homogenous Neumann BC

Simulation setup

- Boundary conditions:
 - Capillary, venule and tissue compartments

Homogenous Neumann BC

Periodic BC

Manufactured solution

- Number of element: 73,002
- Element degree: 2
- Time discretisation: backward Euler
- Time step size: 0.2s
- Choice of solution: $sin(t) + 16x^2 - 32x^3 + 16x^4$ $+ 16y^2 - 32y^3 + 16y^4$ $+ 16z^2 - 32z^3 + 16z^4$
- Physical runtime: 2s
- Iterative solver

Manufactured solution

Preliminary result

- Number of element: 73,002
- Element degree: 1
- Time discretisation: backward Euler
- Time step size: 0.2s
- Physical runtime: 60s
- Direct solver

Preliminary result

Continuation

- Parameter optimisation in both grey matter and white matter
- A patient specific brain model (geometry from Garcia-Gonzalez et al.¹)
- Model verification using data from MR CLEAN trial

¹ Garcia-Gonzalez et al. (2017) J Mech Behav Biomed Mater

Conclusion

- Multi-scale, multicompartment coupled flowoxygen model
- Large scale parameters found through microscale models
- Manufactured solution and preliminary result on a cube
- Patient specific brain
- Active regulation within the brain

A novel multi-scale, multi-compartment model of oxygen transport: Towards *in-silico* clinical trials in the entire human brain

Wahbi El-Bouri, <u>Yun Bing</u>*, Tamas Jozsa and Stephen Payne Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, UK *email: yun.bing@eng.ox.ac.uk