Historical milestones in coronary stents

1964
The stent is conceptualized

1993
Stents are acceptable as treatment option

1994
Bare Metal Stents approved in US

2003
Technology shifts to Drug-eluting stents

2015
FDA approves first Bioabsorbable drug-eluting stents

The global bioresorbable Coronary stents market size is estimated currently at 150 million.

MARKET PLAYER
Boston Scientific, Biotronik, Elixir Medical Corporation, Johnson and Johnson, REVA

[1] Coronary Stents: Market Size, Share and Global Trend By Deployment (Self and Balloon-expandable), Stent Type (Drug Eluting Stent, Bioresorbable Stent, Bare Metal Stent, Covered Stent and Others), End User (Hospitals, Ambulatory Surgical Centers, Specialty Clinics, Catheterization Labs) and Geography Forecast till 2025. Fortune Business Insights; May 2019
The scaffold is inserted into the artery on a balloon at the end of a thin flexible tube.

The scaffold is expanded by inflating the balloon, pushing the plaque against the artery to enable blood flow.

The balloon is removed, leaving the scaffold to slowly release medication to the diseased area.

Blood flow is restored and the scaffold begins dissolving.

Over time, the scaffold dissolves into the blood vessel, which remains open without support.

How it works?

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
Pre-clinical testing and clinical studies

Preclinical testing (*in vitro* and *in vivo*) includes the testing of materials and stents before being tested in humans.

Factors in Clinical Studies

<table>
<thead>
<tr>
<th>Clinical studies</th>
<th>Preclinical testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>in vitro and in vivo includes the testing of materials and stents before being tested in humans.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical studies</th>
<th>Preclinical testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Stent design (length, strut thickness, diameter, etc)</td>
</tr>
<tr>
<td></td>
<td>Patient-specific characteristics (gender, diabetes)</td>
</tr>
<tr>
<td></td>
<td>Type of drug</td>
</tr>
<tr>
<td></td>
<td>Type of vessel (long lesions, number of stenosis, plaque composition)</td>
</tr>
<tr>
<td></td>
<td>Type of biodegradable polymer</td>
</tr>
<tr>
<td></td>
<td>Stenting technique (two versus one stent)</td>
</tr>
</tbody>
</table>
Limitations of clinical studies

Different type & atherosclerosis progress

Comorbidities

Cardiovascular anatomy

Some patients are expected to improve after implantation

Some patients present adverse effects (In stent restenosis, stent thrombosis) or even die.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
• Percutaneous coronary intervention with stents is the most widely performed procedure for symptomatic coronary disease treatment.

• Despite major developments, in stent restenosis remains between 5-10%.

• These long-term limitations of conventional stents may be overcome to a degree by using drug-eluting BVS.
InSilc develops an in-silico clinical trial (ISCT) platform for designing, developing, and assessing drug-eluting bioresorbable vascular scaffolds (BVS), by building on the comprehensive biological & biomedical knowledge and advanced modelling approaches.
InSilc platform is based on the extension of existing multidisciplinary and multiscale models that simulate the drug-eluting BVS performance.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119.
InSilc Modules
Mechanical modelling Module

- Replace all the mechanical *in vitro* tests required for the BVS by technical standard:
3D Reconstruction and plaque characterisation tool

- The 3D Reconstruction and plaque characterisation tool incorporates a state of the art method for 3D arterial tree reconstruction based on level set methods developed in SMARTool project.
- The method is able to accurately reconstruct the arterial tree including lumen, outer wall, calcified and non-calcified plaques.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119.
Deployment Module

• “Virtual” deployment in single stenosed or bifurcated coronary arteries:
 • Advanced modelling with device-specific material properties for BVS and patient-specific models for the stenosed coronary artery.
 • Coupling with Fluid Dynamics Module and Degradation Module, provides information regarding the drug-eluting BVS performance and efficacy in short term.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
Fluid Dynamics Module

• Two different levels:
 • **Macroscopic scale**: blood is treated as a continuum.
 • **Microscopic scale**: multiscale models for describing the process of in stent restenosis.

• Blood components and vessel wall are included on a cellular level, and endothelial denudation, thrombus formation, SMC migration and the impact of the several laminae on the process of ISR is studied.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119.
A whole-heart myocardial perfusion model provides predictions of myocardial perfusion in the cardiac muscle. The Myocardial perfusion model is based on the “myocardium as a poroelastic medium” – with multiple overlapping compartments representing different scales of (micro)vasculature.
Drug-delivery Module

• The drug-delivery module includes 3D modelling of drug release employing most novel types of anti-proliferation drugs through:
 • flow-mediated convection of drug
 • transmural delivery of drug by plasma
 • effective diffusion inside the carrying polymer
 • porous tissue with anisotropic distribution of transport properties.
• Controlled transient release of drug from different layers of polymer include the phase change, diffusion and depletion.
Degradation Module

- Physico-chemical processes that are responsible for material degradation
- Multiphysics progression of degradation processes
- Models of the interaction of the degrading material with the surrounding environment

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
Virtual population

- “Virtual” patients to simulate the drug-eluting BVS performance.
- “Virtual” scenarios include the alteration of the scaffold parameters to evaluate functional characteristics.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119.
InSilc Scenarios

1. Compare existing stents
2. Compare anatomy configurations and patient conditions
3. Compare different clinical procedures
4. Design new stents
5. Pre-clinical testing assessment

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
Virtual Population

- Virtual population is accessible as a database within InSilc platform.
- Each virtual patient’s arterial geometries can be selected through a filtering tool.

<table>
<thead>
<tr>
<th></th>
<th>Arterial segment type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Presence of bifurcation</td>
</tr>
<tr>
<td>3</td>
<td>LDL and HDL values ranges</td>
</tr>
</tbody>
</table>
| 4 | Comorbid condition
 📌 Diabetes
 📌 Hypertension
 📌 Tachycardia |
| 5 | Degree and Length of Stenosis |
| 6 | Type of lesion |

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
Virtual Population

- Imaging data (IVUS, OCT, Angio, CT)
- Clinical data (risk factors, biohumoral data)

- 3D reconstruction tool
- Arterial geometries (Retrospective data, prospective data)
- Boundary conditions
- Non-imaging data

Plaque growth model
- Virtual arterial geometries
- Statistical model
- Virtual clinical data
- Virtual patients combining geometries with clinical data

- Virtual patients with different characteristics (morphological and clinical) used by InSilc modules

- Stent Industry experts
- Contract Research Organization
- Interventional Cardiologists
- Researchers

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
Plaque Growth Model Development

• Based on a previously developed model during SMARTool project.
• Simulation of main mechanisms of atherosclerosis.
• Utilisation of patient-specific data.
• Inclusion of comorbid conditions (diabetes, hypertension, tachycardia)
• Employment of FEA.
• Creation of new arterial geometries.

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
Device Success

• Successful delivery and deployment (post)
• Attainment of a final residual stenosis of the target lesion ≤30% (post)
Clinical trials Objective Performance criteria

- Minimal lumen diameter (MLD) mm (pre)
- Reference vessel diameter (RVD) mm (pre, post, fu)
- Percentage diameter stenosis (in-stent/segment) (pre, post, fu)
- Lesion length (pre)
- Plaque burden (pre)
- Minimal stent area (MSA) (post)
- Stent expansion index (post)
- Stent underexpansion (post)

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
Clinical trials Objective Performance criteria

Imaging endpoints

Clinical Endpoints

• Minimal lumen diameter (MLD)
• Post-procedural lumen eccentricity (post)
• Post-procedural lumen asymmetry (post)
• Malapposed stent struts (post)
• Stent edge dissection (post)
• Stent fracture (post)

Device Success

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 777119
Clinical trials Objective Performance criteria

- Cardiac Death (surrogate)
- Myocardial Infarction (surrogate)
- Revascularisation during in stent restenosis (surrogate)
InSilc Scenario 1 - Compare existing stents

Clinical Relevance

- Polymer-based BVS performance may be different compared to permanent metallic DES.
- This scenario directly compares behaviour of both BVS and DES devices in the same coronary artery and provides clinically relevant insight into key features.

<table>
<thead>
<tr>
<th>Related clinical trials</th>
<th>Trial</th>
<th>N</th>
<th>Comparison</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ellis et al. 2015</td>
<td>2008</td>
<td>Everolimus Eluting BVS vs Everolimus Eluting Stent</td>
</tr>
<tr>
<td></td>
<td>Chevalier et al. 2015</td>
<td>501</td>
<td>Everolimus Eluting BVS vs Everolimus Eluting Stent</td>
</tr>
<tr>
<td></td>
<td>Cassese et al. 2015</td>
<td>3738</td>
<td>Everolimus Eluting BVS vs Everolimus Eluting Stent</td>
</tr>
<tr>
<td></td>
<td>Puricel et al. 2015</td>
<td>240</td>
<td>Everolimus BVS vs Everolimus or Biolimus Eluting Stent</td>
</tr>
<tr>
<td></td>
<td>Kereiakes et al. 2015</td>
<td>1684</td>
<td>Synergy vs Everolimus ES</td>
</tr>
<tr>
<td></td>
<td>Byrne et al. 2019</td>
<td>262</td>
<td>Everolimus Eluting BVS vs Everolimus Eluting Stent</td>
</tr>
</tbody>
</table>

InSilc Scenario 1 - Compare existing stents

In Silico approach

- 3D reconstruction tool of coronary arteries and plaque characterization tool
- Deployment Module
- Fluid Dynamics Module
- Drug Delivery Module
- Degradation Module
- Myocardial Perfusion Module

Modules

Devices

- Absorb BVS Stent
- Single coronary artery with specific inclusion criteria

Synergy Stent
InSilc Scenario 1 - Compare existing stents

In Silico approach

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777119
InSilc Scenario 1
Clinical trials Objective Performance Criteria

<table>
<thead>
<tr>
<th>Vessel Characteristics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Vessel length (mm)</td>
<td>44</td>
</tr>
<tr>
<td>RVD (mm)</td>
<td>3.52</td>
</tr>
<tr>
<td>Lesion length (mm)</td>
<td>17</td>
</tr>
<tr>
<td>MLD (mm)</td>
<td>1.65</td>
</tr>
<tr>
<td>Percentage diameter stenosis</td>
<td>54%</td>
</tr>
</tbody>
</table>
InSilc Scenario 1
Clinical trials Objective
Performance Criteria

Synergy

Post-deployment

Maximum balloon inflation

Absorb

Maximum balloon inflation

Von Mises Stress [MPa]

0 500 1000

0 40 80
Short-term behaviour: post-deployment

<table>
<thead>
<tr>
<th></th>
<th>Synergy</th>
<th>Absorb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Successful delivery and deployment</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Final residual stenosis < 30% of the target</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>MLD - post-procedural [mm]</td>
<td>3.7</td>
<td>3.1</td>
</tr>
<tr>
<td>Diameter stenosis post-procedural [%]</td>
<td>0</td>
<td>12</td>
</tr>
<tr>
<td>Minimal stent area [mm²]</td>
<td>10.7</td>
<td>7.5</td>
</tr>
<tr>
<td>Stent expansion index [-]</td>
<td>1.10</td>
<td>0.77</td>
</tr>
<tr>
<td>Eccentricity index - EI [-]</td>
<td>0.96</td>
<td>0.96</td>
</tr>
<tr>
<td>Asymmetry index - AI [-]</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>Malapposed strut surface [%]</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Stent edge dissection</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Stent fracture</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

*MLA=minimum lumen area
InSilc Scenario 1
Clinical trials Objective Performance Criteria

3D shear stress maps of the two stents (qualitative)

Absorb

Synergy
InSilc Scenario 1
Clinical trials
Objective
Performance Criteria

3D shear stress maps of the two stents (quantitative)

Absorb

Synergy
InSilc Scenario 1
Clinical trials Objective
Performance Criteria

2D shear stress maps and predicted intima growth

WSS (Pa)

Thickness (mm)
InSilc Scenario 1
Clinical trials Objective
Performance Criteria

Predicted imaging follow-up data

Absorb
- neo-intimal thickness: 0.41 mm
- MLA: 7.8 mm²
- in-stent volume obstruction: 24%

Synergy
- neo-intimal thickness: 0.4 mm
- MLA: 11.6 mm²
- in-stent volume obstruction: 20%
InSilc Scenario 1
Clinical trials Objective
Performance Criteria

Free drug concentration at different times

SYNERGY

1h

12h

24h

48h

72h

ABSORB
InSilc Scenario 1
Clinical trials Objective
Performance Criteria

Absorb

Day 0

Day 300

Day 600

Day 700

Degradation variable describes ratio of current Von-mises stress \((\sigma_e)\) to current yield stress \((\sigma_y(t))\).

\[
\frac{\sigma_e}{\sigma_y(t)}
\]

Damage due to degradation initiated ~Day 600
InSilc Scenario 1

Clinical trials Objective Performance Criteria

<table>
<thead>
<tr>
<th>MODEL INPUT</th>
<th>Day 0</th>
<th>Day 300</th>
<th>Day 600</th>
<th>Day 700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Percentage diameter stenosis</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td>Minimal stent area (MSA) (post)</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>98.4%</td>
<td>90.1%</td>
</tr>
<tr>
<td>Malapposed stent struts (post)</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
<td>Unchanged</td>
</tr>
<tr>
<td>Stent fracture (post)</td>
<td>No</td>
<td>No</td>
<td>No (mild damage)</td>
<td>No (mild damage)</td>
</tr>
<tr>
<td>Late loss: in-stent and in-segment luminal loss (fu)</td>
<td>No</td>
<td>No</td>
<td>Minor</td>
<td>Minor</td>
</tr>
<tr>
<td>Strut discontinuity or dismantling</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
Myocardial perfusion [mL/min/100g] is used as surrogate to predict major adverse cardiac events (MACE)
What did we learn?

Both stents successfully implanted, without any critical post-deployment condition. Synergy performs slightly better in terms of stent expansion and lumen opening.

Fluid dynamics module

Drug delivery module predicted a slightly better performance of Synergy in drug delivery to the tissue as a result of superior apposition and hemodynamics.

Degradation module

Ongoing. This module will be able to compare the post-intervention myocardial reperfusion for different stents.

Deployment module

Bigger struts of ABSORB scaffold induce larger regions exposed to low wall shear stress, potentially leading to more in stent restenosis.

Drug delivery module

Degradation module predicted onset and progression minimal stent damage at 600 Days, leading to slight reduction in lumen geometry.

Myocardial Perfusion Module
Why *in silico* clinical trials?

Why InSilc?
Regulatory road map and actions

- Identify the requirements for the certification of in silico trials for drug-eluting BVS
- Provide evidence of the increase in the statistical power of InSilc by simulating more homogeneous and more «virtual» patients
- Show the benefit in terms of clinical trials costs and duration
- Estimate the reduction in animal testing
- Define the target selection criteria of the patient population for reducing the need of complex and lengthy trials
- Study all regulatory issues which could prompt a transformation
 - Regeneration of the Stent Biomedical Industry to promote in silico trials
 - Explore the societal consequences of InSilc platform adoption
 - Investigate the standards to be taken into consideration
 - Define the ethical, privacy, secure data storage and management issues.
In silico clinical trial platform

Software as a medical device (SaMD) = software intended to be used for one or more medical purposes that perform these purposes without being part of a hardware medical device –

» Simulation as a medical device

for designing, developing and assessing

Intended use/intended purpose = the objective intent of the manufacturer regarding the use of a product, process or service …»

Fundamental in the determination of its classification

drug-eluting bioresorbable vascular scaffolds (BVS)

Class III medical device

Regulatory road map and actions

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777119
Computational modeling can be part of a regulatory submission in two ways:

- when simulation results serve as supporting (digital) evidence in a marketing application for a medical device:
 - mechanical testing
 - non-clinical testing: assessment of known risks by engineering failure modes
- when simulation is a medical device, such as for clinical decision support; this is “software as a medical device.”

Simulation results to support the screening of new stents:

Simulation results as supporting (digital) evidence:
- “in silico” simulation of clinical trials based on standard surrogate endpoints

InSilc platform
Regulatory road map and actions

What is needed to document validation and acceptance of computer modelling and simulations (CM&S) applied to the InSilc platform

Preliminary adoption of the platform for in silico trials with BVS

Current/incoming regulatory pathways for clinical investigations with medical devices → coronary stents

Regulatory aspects related to the acceptance of the models

Regulatory aspects related to the platform

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777119
<table>
<thead>
<tr>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>REGULATION (EU) 2017/745</td>
</tr>
<tr>
<td>Art 62 General requirements regarding clinical investigations conducted to demonstrate conformity of devices</td>
</tr>
<tr>
<td>Guidelines for the conduct of clinical trials with coronary stents</td>
</tr>
<tr>
<td>Report of an ECS-EAPCI Task Force on the evaluation and use of bioresorbable scaffolds</td>
</tr>
<tr>
<td>FDA - 2016 Guidance</td>
</tr>
<tr>
<td>Reporting of Computational Modeling Studies in Medical Device Submissions</td>
</tr>
<tr>
<td>American Society of Mechanical Engineers (ASME) verification and validation (V&V) subcommittee on computational models of medical devices (ASME V&V 40 subcommittee)</td>
</tr>
<tr>
<td>Medical Device Innovation Consortium</td>
</tr>
<tr>
<td>FDA's Office of Science and Engineering Laboratories (OSEL)</td>
</tr>
<tr>
<td>IMDRF International Medical Device Regulation Forum</td>
</tr>
</tbody>
</table>
• Regulatory requirements and reference guidance for clinical investigations with BVS well established
• Regulatory guidelines for the acceptance of the models partially available, but adaptation to InSilc models is needed.
 • Main question for regulators: define the accepted level of accuracy and reproducibility
• Regulatory guidelines related to the platform as SaMD available

CRITICAL POINTS for the adoption of the platform for in-silico trials with BVS

• Clinical trial requirements for in silico trials are not existing
• Previous experience is missing
• The targeted clinical condition and the treatment have too many variables to be considered to allow for accurate and reliable simulations

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 777119
Current regulatory activities

- Extensive collection and review of regulations, guidelines and publications
- Definition of the recognised short/mid-term surrogate endpoint to be tested in the modules
- Consulting with Prof. Viceconti (ex Insigneo Institute for *in silico* medicine – Avice nna Alliance) and liaison with other in silico projects
- Consulting with invasive cardiologists members of ESC/EAPCI (ex task force on BVS)
- Contacts with European Forum for Good Clinical Practice
- Preliminary contacts with FDA and EMA
Future regulatory activities

- Work closely with:
 - Experts from the Medical Device Coordination Group and FDA
 - Notified Bodies
 - ISO experts
 - Avicenna Alliance
 - ESC/EAPCI
 - European Forum for Good Clinical Practice
 - EUCROF (European CRO Federation)