

П

Modelling bone at the tissue scale: the missing link between drug design and clinical outcome

Marco Viceconti, Enrico Dall'Ara, Shannon Li, and Alberto Marzo

ALMA MATER STUDIORUM Università di Bologna

Institute for in silico Medicine

- Bone drugs are long-term therapies that aim to reduce the risk of bone fracture associated with low-energy impacts (fragility fractures)
- The risk of hip fracture in the general population over-50 is only 2% over ten years
- To observe 100 hip fractures we would need to follow up for 10 years over 5,000 patients

- Efficacy of recent bone drugs was demonstrated indirect endpoints, such as changes in bone mass
- But bone mass can explain only 60-70% of hip fractures
- This creates the serious possibility that the efficacy found in the phase III clinical trial, will not translate into effectiveness in future HTA studies

- Many of these new drugs can be used only once the patient life, and only for limited time; it would be important to know when is the best time to use them
- But clinical trials aimed to optimise the treatment protocol with two or more drugs would be prohibitively expensive, so no one does them

Why not use computer simulation?

In any other industrial sector

In healthcare

Testing is now done mostly with computer simulation

We test safety and efficacy of new products only by trial and error

A model for In Silico Trials

Simplest use: time extrapolation

An hypothetical model

A **validated** patient-specific model that predicts the risk of hip fracture today

A **validated** mouse-specific model that can provide an estimate of the drug effect

A **validated** stochastic population-specific bone remodelling algorithm model that predicts changes in bone over time

Photron

10000 fps 384 x 192 00:00:00.5090 FASTCAM-1024FC1mcd. 1/15000 sec trame -5090 © UNIBO 2018 1 3 1 4 5 9

CT2S: from imaging to models

Basu PK, *et al.* Biomater Med Devices Artif Organs. 1985; 13:163-186.

Experimental validation

Cristofolini L. et al. Phil. Trans. R. Soc. A 2010;368:2725-2763

ARF0 fall simulator

ARF0 (%)

- Multiscale model of fall, body-floor dumping, femur deformation
- Full stochastic modelling of fall
- Stochastic modelling of uncertainties (i.e. soft tissue dumping)
- Accuracy 0.82 → 0.84

Not an easy journey

Validation of FE models of mouse tibia

- 20 tibiae from C57BL/6 and BALB/c mice, 16-24 week-old
- Validation of structural mechanical properties

Validation of FE models of mouse tibia

- 6 tibiae from C57BL/6 mice, 16-24 week-old
- Validation of local displacements

Bone remodelling algorithm

INSIGNEO 1. Cheong et al., BMMB, under revision

EPSRC Engineering and Physical Sciences Research Council MultiSim

- It is a long journey to develop and validate In Silico Trials models
- In CompBioMed2 we plan to:
 - complete the development
 - Complete the validation of the BR simulator
 - run large scale in silico trials of drugs already in use to provide a final clinical validation

ALMA MATER STUDIORUM Università di Bologna

Prof. Marco Viceconti Dipartimento di Ingegneria Industriale Scuola di Ingegneria e Architettura Email: <u>marco.viceconti@unibo.it</u>

http://www.ingegneriaindustriale.unibo.it/it/ricerca/ambiti-di-ricerca/bioingegneria-industriale