opportunities and challenges for free energy calculations in drug design

Christina Schindler CompBioMed 2019

Acknowledgements

MedChem Boston & Darmstadt

CompChem Boston & Darmstadt

- Theresa Johnson
- Alejandro Crespo
- Liwei Li
- Daniel Kuhn
- Jakub Gunera
- Paul Czodrowski
- Mireille Krier
- Jakub Gunera
- Hannah Baumann
- Robert Schulz
- Merveille Eguida

Schrödinger

- Daniel Cappel
- Thomas Steinbrecher
- Jörg Weiser
- Thijs Beuming
- Olivia Pierce

Digitize Merck team

- Friedrich Rippmann
- Thomas Fürst

MSKCC

- Levi Naden
- John Chodera

c-MET inhibitor CHEMBL3402750

c-MET inhibitor CHEMBL3402751

c-MET inhibitor CHEMBL3402750

c-MET inhibitor CHEMBL3402750 (400 nM)

c-MET inhibitor CHEMBL3402751 (2100 nM)

Technical: Manage large-scale

computations on specialized hardware

Scientific:

Achieve sufficient prediction accuracy (<1.4 kcal/mol)

Technical:

Manage large-scale computations on specialized hardware

Scientific:

Achieve sufficient prediction accuracy (<1.4 kcal/mol)

Operational: Communication, timing and impact in projects

Merck

Broad application across multiple targets and series FEP+ in drug discovery at Merck KGaA, Darmstadt, Germany

- How does FEP perform?
- What are the learnings?
- What is the impact on projects?

N = 463 Average Kendall tau = 0.37 Average RMSE = 1.64 kcal/mol Cohen's d for R2

- Glide: 0.76
- Prime: 0.74

Challenges

- Predictions often not possible in certain parts of the molecule
- Transformation from short Rgroup to long, flexible chains

Merck

N = 463 Average Kendall tau = 0.37 Average RMSE = 1.64 kcal/mol Cohen's d for R2

- Glide: 0.76
- Prime: 0.74

Challenges

- Predictions often not possible in certain parts of the molecule
- Transformation from short Rgroup to long, flexible chains

Merck

N = 463 Average Kendall tau = 0.37 Average RMSE = 1.64 kcal/mol Cohen's d for R2

- Glide: 0.76
- Prime: 0.74

Challenges

- Predictions often not possible in certain parts of the molecule
- Transformation from short Rgroup to long, flexible chains

Merck

N = 463 Average Kendall tau = 0.37 Average RMSE = 1.64 kcal/mol Cohen's d for R2

- Glide: 0.76
- Prime: 0.74

- Predictions often not possible in certain parts of the molecule
- Transformation from short Rgroup to long, flexible chains

Merck

N = 463 Average Kendall tau = 0.37 Average RMSE = 1.64 kcal/mol Cohen's d for R2

- Glide: 0.76
- Prime: 0.74

Challenges

- Predictions often not possible in certain parts of the molecule
- Transformation from short Rgroup to long, flexible chains

Merck

264 ligands for eight pharmaceutically relevant targets New benchmark for free energy calculations created

Recent ligand-target pairs collected from literature

Diverse chemical transformations representative of modifications in (early) compound optimization

Challenging transformations to test methodological advances in FEP+: charge changes and ring openings

Available on github:

github.com/MCompChem/fep-benchmark

$$\begin{split} \Delta \Delta G_{\rm exp} &= -0.93 \ \rm kcal/mol \\ \Delta \Delta G_{\rm pred} \!= \! -1.37 \ \rm kcal/mol \end{split}$$

N = 264

Large public benchmark with eight pharmaceutically relevant targets Good performance on challenging data set

Large public benchmark with eight pharmaceutically relevant targets Good performance on challenging data set

Merck

c-MET inhibitor CHEMBL3402750

We can predict binding affinity with good accuracy...

...but how to best use it?

22 compounds synthesized and tested

Scenario:

Continuous evaluation of synthesis proposals and prioritization with FEP

Benefit:

Save synthesis resources spent on inactive molecules

Problems:

- Number of compounds proposed often not much larger than compounds synthesized
- Chemists don't want to wait for FEP predictions
- After 6 months, nobody will remember the bad molecules that were not made

22 compounds synthesized and tested

Scenario:

Continuous evaluation of synthesis proposals and prioritization with FEP

Benefit:

Save synthesis resources spent on inactive molecules

Problems:

- Number of compounds proposed often not much larger than compounds synthesized
- Chemists don't want to wait for FEP predictions
 - After 6 months, nobody will remember the bad molecules that were not made

22 compounds synthesized and tested

Scenario:

Continuous evaluation of synthesis proposals and prioritization with FEP

Benefit:

Save synthesis resources spent on inactive molecules

Problems:

- Number of compounds proposed often not much larger than compounds synthesized
- Chemists don't want to wait for FEP predictions
- After 6 months, nobody will remember the bad molecules that were not made

Scenario:

Continuous evaluation of synthesis proposals and prioritization with FEP

Benefit:

Save synthesis resources spent on inactive molecules

Problems:

- Number of compounds proposed often not much larger than compounds synthesized
- Chemists don't want to wait for FEP predictions
- After 6 months, nobody will remember the bad molecules that were not made

IC50 = 92 nM

IC50 = 92 nM

variation of R-groups

Library constructed from commercially available building blocks 15,600 cpds

Jakub Gunera

IC50 = 92 nM

variation of R-groups

Library constructed from commercially available building blocks 15,600 cpds

Filtering by properties and substructures 307 cpds

IC50 = 92 nM

variation of R-groups

Library constructed from commercially available building blocks 15,600 cpds

Filtering by properties and substructures 307 cpds FEP 20 cpds selected Synthesis on-going

Jakub Gunera

Jakub Gunera

Prospective

Library scanning with covalent FEP Replacement for unwanted R-group needed

Known SAR

FEP validation study

Merck

Merck

SPR KDss = $300 \mu M$ LE = 0.25

Merck

Merck

Summary

- Large-scale prospective benchmarking demonstrated that accuracy of 1.6 kcal/mol can be obtained for diverse and challenging targets in an industry setting
- Large new public benchmark for free energy calculations created
- Accuracy on benchmark is in line with prospective results from in-house projects
- Recommended use case: large library scanning with FEP
- Successful in-silico optimization of fragment to hit

FEP has become a mainstay in computational chemistry support at Merck KGaA, Darmstadt, Germany

FEP benchmark available on github: github.com/MCompChem/fep-benchmark

Merck

Free energy perturbation (FEP)

A physics-based method for computing binding affinity differences with molecular dynamics simulations

264 ligands for eight pharmaceutically relevant targets New benchmark for free energy calculations created

 $\Delta\Delta G_{\rm exp} = -2.16$ kcal/mol $\Delta\Delta G_{\rm pred} = -2.36$ kcal/mol

$$\begin{split} \Delta \Delta G_{\rm exp} &= -0.93 \ \rm kcal/mol \\ \Delta \Delta G_{\rm pred} {=} -1.37 \ \rm kcal/mol \end{split}$$

Desired accuracy below 1 kcal/mol Validation results vary across targets and (sub-)series

FEP validation studies

Pushing the technology to the edge Observed limitations in FEP calculations (qualitative)

- Predictions often not possible in certain parts of the molecule (indicated by validation study)
- Difficulty in predicting solvent accessible R-groups (often overestimated)
- Transformation from short R-group to long, flexible chains
- Transformation from aromatic to aliphatic ring → improvement in OPLS3e
- Changes in net charge and charge distribution
- Substituted aliphatic rings → improvement with new torsion fitting feature in release 19-3

