Adaptive sampling for alchemical free energy calculations

Hannah Bruce Macdonald - John Chodera

Memorial Sloan Kettering Cancer Center, NYC

Email: <u>Hannah.brucemacdonald@choderalab.org</u> Twitter: @hannahbruce

Outline

- Introduction to free energy calculations
- Part A Adaptive sampling for given rewards (Bayesian bandits)
- Part B Intelligent experiment design

For a given amount of resources, how can we best use that to ask questions?

Free energy calculations

- Alchemically perturb one ligand into another
- Doing this in two phases allows for free energy cycles to be formed

Motivation: Free energy calculations are computationally expensive – how can we run them most efficiently?

Pairwise comparisons of ligands

• Relative free energy calculations do pairwise comparisons of ligands within a set.

Computationally expensive

More error prone

Pairwise comparisons of ligands

• Relative free energy calculations do pairwise comparisons of ligands within a set.

More error prone

Perses

- github.com/choderalab/perses
- Open-source relative free energy software, developed in the Chodera lab
- Single-topology type calculations (*dual-topology coming soon*)
- Uses openmm as MD engine

Part A - Adaptive sampling

- When considering a set of molecules and
 - Sampling high affinity ligands?
 - Uncertain ligands?
 - Multiple properties?

- Or multi-armed bandits
- Decision making based on what we understand of the system (so far)
- As we sample more, our understanding improves
- Applications:
 - Gambling
 - A/B testing
 - Drug trials

- What would be a pharmaceutically relevant reward?
 - Increasing the sampling of highly soluble ligands
 - Increasing the sampling of uncertain results
 - Increasing the sampling of favourable binders

- Hydration free energies of 196 benzene derivatives from the freesolv¹ dataset
- Toy data sampling from experimental results

1) Mobley, David L., and J. Peter Guthrie. "FreeSolv: a database of experimental and calculated hydration free energies, with input files." *Journal of computer-aided molecular design* 28.7 (2014): 711-720.

• Hydration free energies of 12 benzene derivatives from the **freesolv**¹ dataset ^{0- benzene 1- phenol 2- toluene 3- pentylbenzene}

1) Mobley, David L., and J. Peter Guthrie. "FreeSolv: a database of experimental and calculated hydration free energies, with input files." *Journal of computer-aided molecular design* 28.7 (2014): 711-720.

• Increasing sampling of 'inconclusive' relative free energies

More sampling of relative free energy calculations close to zero

- Schrodinger dataset
- 42 ligands

				cll al	ll-pairs	- A&G (N = 1722
anse	:	0PL52.1	1.49	[95]:	1.44.	1.541	kcal/mol
9658	1	GAFF	2.11	(95%):	2.05.	2.18	kcal/mol
1045E	1	PERSES	2.70	[95]:	2.62.	2.78	kcal/mol
1UE	÷	0PL52.1	1.20	[95\s:	1.16.	1.24	kcal/mol
4UE	:	GAFF	1.68	[95]:	1.62,	1.74	kcal/mol
4UE	:	PERSES	2.20	[95]:	2.12,	2.28)	kcal/mol
12	1	0PL52.1	0.02	(95%):	-0.07.	0.10	kcal/mol
R2	£	GAFF	-0.97	[95\s:	-1.15.	-0.80)	kcal/mol
42	t	PERSES	-2.20	[95N:	-2.50.	-1.92	kcal/mol
rho	:	0PL52.1	0.77	[95]:	0.75,	0.79	kcal/mol
rho	:	GAFF	0.65	[95]:	0.62,	0.68)	kcal/mol
rite	Ξ.	PERSES	0.49	(95%)	0.46.	0.52	kcal/mol

Increased sampling of molecules with higher affinity to the reference.

Summary – Part A

- Bayesian bandits can direct simulations towards features of interest:
 - High affinity ligands (solubility or binding)
 - Uncertain ligands
- Could reduce the computational time required to answer questions
- Multi-objective design

Part B – optimal map design

- 66 x 5 ns = 330 ns of simulation for hydration free energies of 12 molecules
- High effort
- Scales terribly

Results

- How can we best move to something lower effort?
- Which, and how many 'edges' should we use?
- The 'best' edges have the smallest variance, or highest efficiency

How best to simplify the graph?

• Not all edges are equal

Results – efficiency

- Efficiency is the inverse of the variance
- $e_i = \sigma_i^{-2}$
- Doubling the efficiency halves the required simulation time

Results – efficiency

• How can we minimize the graph to fewer edges most effectively?

Thicker line = more efficient = better

Optimal graphs

- Two preprints addressing this:
- "Optimal measurement network of pairwise differences"¹ **DiffNet**
- "Optimal Designs of Pairwise Calculation: an Application to Free Energy Perturbation in Minimizing Prediction Variability"²
- Choices in optimal -
 - A-optimal: minimizes variances relative to a single vertex
 - D-optimal: minimizes variances for all edges
- 1) Xu, Huafeng. "Optimal measurement network of pairwise differences." arXiv preprint arXiv:1906.08599 (2019).
- 2) Yang, Qingyi, et al. "Optimal Designs of Pairwise Calculation: an Application to Free Energy Perturbation in Minimizing Prediction Variability." ChemrXiv preprint arXiv:7965140.v2 (2019).

DiffNet

- N by N matrix of the statistical fluctuations of the simulations ${f C}$
 - Where statistical fluctuation is $s_i = \sqrt{n_i \sigma_i^2}$

- Choices in optimal -
 - A-optimal: minimizes variances relative to a single vertex
 - Minimize trace(**C**)
 - D-optimal: minimizes variances for all edges
 - Minimize In det(C)

Results – DiffNet

- These results are generated from the results... could we do this prospectively?
- Would need an estimate for the variance

Estimating the variance *a priori*

• Results from cheaper simulations?

Estimating the variance *a priori*

Estimating the variance *a priori*

• Possibly this is something that could be learnt?

Results – similarity measures

NOTE: This is a very small dataset

Summary – Part B

- By optimizing free energy calculations, we can minimize variance (error bars) for a given 'amount' of simulation
- Conversely, we could use less computer time to get error bars of a target *size*.
- Need a good method to predict the variance *a priori*
 - Vacuum variance?
 - Machine learning?
 - Updating on the fly?

Future Work

- Fully demonstrate this for a protein-ligand system
- Implement this *on-the-fly*
 - DASK for handling workflow
- Combining absolute and relative free energies optimally
 - (and other types of relative free energies)
- Optimize perturbations via protocols
- Improving the predictions of variance
- More adaptive sampling Bayesian bandits for multi-optimization design

Acknowledgements

- John Chodera *supervision, ideas, money*
- Dominic Rufa *help on this project*
- Patrick Grinaway *original perses developer*
- Josh Fass *discussions on adaptive sampling*
- Chodera lab for everything
- MSKCC resources
- MolSSI funding

Email: <u>Hannah.brucemacdonald@choderalab.org</u> Twitter: @hannahbruce

Results – DiffNet

• Are these graphs better?

Results – DiffNet

- These results are generated from the results... could we do this prospectively?
- Would need an estimate for the variance

Results – validation

- 12 benzene derivatives
- Error bars are drawn
- 3 outliers (all involve fenuron)
 - Closer to experiment for all 3

RMSE	:	1.32	[954:	0.52,	1.90	kcal/mol
MUE	:	0.61	[954:	0.36,	0.90]	kcal/mol
R2	:	0.93	[954:	0.82,	0.99]	kcal/mol
P	:	0.97	[954:	0.93,	0.99]	kcal/mol

Results – benchmarking

RMSE	1	3.02	[95%:	2.46,	3.61	kcal/mol
MUE	;	2.28	[954:	1.82,	2.79]	kcal/mol
R2	:	0.57	[954:	0.30,	0.74]	kcal/mol
P	5	0.84	[954:	0.77,	0.89]	kcal/mol

MSE	:	2.90	[954:	2.36,	3.40]	kcal/mol
NΕ	:	2.22	[954:	1.79.	2.70]	kcal/mol
R2	:	0.60	[954:	0.37,	0.73]	kcal/mol
P	:	0.85	[954:	0.78,	0.90]	kcal/mol

