The Convergence of HPC and Al for Healthcare on Intel[®] Based Supercomputers

Dr. Valeriu Codreanu Group Leader, High-Performance Machine Learning Group SURFsara

SURFsara & Intel IPCC* Team

Valeriu Codreanu, PhD Senior HPC/AI Consultant IPCC PI, SURFsara

Damian Podareanu, MSc HPC/AI Consultant SURFsara

- SURFsara is a Dutch organization focused on computing, data management and storage at a national scale
- Support Dutch researchers in taking an early competitive advantage of upcoming technologies
- SURF Open Innovation Lab focuses on emerging technologies

Vikram Saletore, PhD Principal Engineer IPCC Co-PI & Al Products Group, Intel

Radboud University Medical Center

Dell EMC

COLLABORATIONS UNDER IPCC

Netherlands Cancer Institute (NKI)

Dell-SURFsara-Intel CheXNet

CheXNet (from Stanford) is a model for identifying thoracic pathologies from the NIH ChestXray14 dataset

- DenseNet121 topology
 - Pretrained on ImageNet
- Dataset contains 112K images
 - Multicategory / Multilabel
 - Unbalanced

https://stanfordmlgroup.github.io/projects/chexnet/

Transfer Learning Using Highly Accurate ResNet-50 for Real Use Case

Fine-tuned ResNet-50 that was pre-trained on ImageNet using the Zenith cluster.

Transfer learning using the TPU repository

To increase accuracy:

- When picking a pre-trained checkpoint do not pick the last one.
- Start with the learning rate at which the model was training when it was checkpointed.
- Perform gradual warmup of the learning rate, proportionally to the global batch size.

To compute efficiently:

SURF SARA

- Pack data in TF Records and consume them efficiently (asynchronously with compute).
 - Preferably in Tensorflow

Comparative timings for 128-node transfer learning run

Global batch size	Framework	# nodes	Time/epoch
4096	Keras	128	85 s
4096	Tensorflow	128	18 s

Can we do better? Large-input ResNet

Extended ResNet-50 to ResNet-59

- Increased input size to 1024x1024
 - stride-2 convolution in the second residual block
- Higher memory and compute requirements:
 - ~4x heavier model
 - ~43GB memory use for a batch size of 64
- Trained on ImageNet for only 60 epochs:
 - Global batch size: 10240
 - top1/top5 accuracy of 78%/94%
 - Around 8h time-to-train on 256 nodes!

LATER	Output shape	Layer
Input	3x224x224	Input.
Conv 1, 7x7, stride 2	64x112x112	Conv 1, 7s7, stride 2
Max Pool, 3x3	64(58)(56	Max Pool, 3x3
ResBlock 2a	256056456	ResBlock 2a
ResBlock 2h	256856856	ResBlock 2h
ResBlock Jr	250x56x56	ResBlock 2c
ResBlock 3a	582x28x28	Redflexk 3a
ResBlock Jb	582528028	BesBlock 3b
ResBlock Jr.	582x28x28	ResBlock 3c
ReiBlock M	582x28x28	ResBlock 4a
ResBlock 4a	1004x14x14	ResBlock 4b
ResBlock do	1024x34x34	ResBlock 4c
ResBlock 4c	1024x14x14	ResEllock 4d
ResBlock 4d	1034x14x14	ResBlock 5a
ResBlock 4e	1024x14x14	BasiBlock 3b
ResElicck #	1024x14x14	ResBlock 5c
ResBlock Sa	2048x7x7	ResBlock 5d
ResBlock St	204847x7	ResBlock Se
ResBlock Sc	2048x7x7	RenBlock St
Average pool.	2048x1x1	BesBlock Sa
Flatten	2948	ResBlock 6b
Output	34	ResBlock 6c
		Average Pool
ResNet-50 au	rchitecture	Flatten
		Output

Support shape 3x896x896

6414481448

6452265724

256x112x117

256x112x112

256x112x11 512x56x56

512x56x56

512x56x56

1034x78x28

1024x25x28

1004x29x28

1034428428

2048x14x14

2048x14x34

2048x34x34

2048x14x14

2045x14x14

2048x14x14

4005x7x7

4006x7x7

4095x7x7

4096x1

4096

ResNet-50 and beyond

- ResNet-50 provides great scalability and improved results
- ResNet-59, with 896x896 input improves accuracy further
- It takes 50 minutes to train ResNet-59 on ChestXRay-14 using 240 nodes – for higher accuracy

• Large memory usage for large-input models

Exploring scalable, accurate AI radiology models

Mean AUROC

SURF SARA

High computational and memory requirements!

	ResNet50	ResNet59	AmoebaNet (4,256)	AmoebaNet (2,512)
No. parameters	22M	90M	80M	168M
Input size	224x224	896x896	299x299	480x480
Training throughput [img/s/node]	90	22.5	13.3	3.5
Memory consumption/ batch of 64 images [GB]	11	43	61	125
Approximate training time on 256 nodes [minutes]	8.8	36	53	198
Top-1 accuracy on ImageNet-1K	76.2%	78.1%	79.9%	80.9%

See also our research poster:

(RP22) Supercomputer-Scale Training of Large AI Radiology Models

Ongoing Investigations

Intel & SURFsara IPCC Research

Valeriu Codreanu Senior HPC/AI Consultant IPCC PI, SURFsara

Damian Podareanu, MSc HPC/AI Consultant IPCC co-PI, SURFsara

Vikram Saletore Principal Engineer & Performance Architect IPCC Co-PI, AI Products Group, Intel

Kushal Datta Machine Learning Engineer Al Products Group, Intel

Caspar van Leeuwen HPC/AI Consultant, SURFsara

SURF SARA

Ruben Hekster Al Consultant, SURFsara

Maxwell Cai Al Consultant, SURFsara

David Ruhe Al Consultant, SURFsara

Histopathology image analysis

- A medium-sized digital pathology lab processes ~ 30.000 cases / year
- M.D.s need tools to optimize their daily workflow
- Al adoption is slow and few hospitals have such tools in production
- Samples are very large: **55.88GB** in 3 byte RGB pixel format
- Patches can be used, but for certain afflictions, absolute location is important
- Special acknowledgment: EXAMODE

Tellez-Martin D, et al. Whole-slide mitosis detection in H&E breast histology using pHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE/Trans Med Im 2008.

13

Camelyon challenge

- [...] automated detection and classification of breast cancer metastases in whole-slide images of histological lymph node sections.
- This task has high clinical relevance and would normally require extensive microscopic assessment by pathologists. [...]

- Semantic segmentation task
- 400 WSI from:
 - Radboud University Medical Center
 - University Medical Center Utrecht

WSI Stain normalization

Source images

Target images

Zanjani, F. G., Zinger, S., Bejnordi, B. E., & van der Laak, J. A. (2018). Histopathology Stain-Color Normalization Using Deep Generative Models.

Atrous convolutions and mIoU

Main idea: Improve segmentation by learning spatial orientation of Regions of Interest in WSIs

Deeplabv3+ pretrained backbone of xception65 trained on ImageNet and COCO for the semantic segmentation task

16

Patch size dependent accuracy

Patch size	mloU	Batch size	Memory consumption
704x704	0.78	8	11 GB
1024x1024	0.83	8	22 GB

- These results don't have stain normalization
- Batch size hinders performance and convergence
- Growing to larger patches seems very difficult without vast memory
- For both patch sizes weak scaling up to 8 nodes (workers) :
 - ~98% efficiency
 - Lead to a better mIoU score (+0.04) for the larger patch size. We believe this is due to the small batch size used for 1 worker.

Future steps

- Analyze further large patch impact on accuracy
- Scale-out experiments to large batch sizes

Preliminary conclusion

• Memory utilization can be traded to accuracy for the semantic segmentation task on the histology data from the Camelyon challenge

Netherlands Cancer Institute (NKI) use-case Head & Neck CT synthesis with large-scale GANs

- Goal: Generate realistic 3D CT scans of large dimensionality
 - > 512³ voxels (**500MB-1GB per example**)
- Can help medical centers:
 - Improve their discriminative models
 - Remove some privacy concerns Easier data sharing
 - Predict treatment plan on radiotherapy Conditional on patient

			C	ELEBA		
Training configuration	Sliced Wasserstein distance ×103				MS-SSIM	
	128	64	32	16	Avg	
(a) Gulrajani et al. (2017)	12.99	7.79	7.62	8.73	9.28	0.2854
(b) + Progressive growing	4.62	2.64	3.78	6.06	4.28	0.2838
(c) + Small minibatch	75.42	41.33	41.62	26.57	46.23	0.4065
(d) + Revised training parameters	9.20	6.53	4.71	11.84	8.07	0.3027
(e*) + Minibatch discrimination	10.76	6.28	6.04	16.29	9.84	0.3057
(e) Minibatch stddev	13.94	5.67	2.82	5.71	7.04	0.2950
(f) + Equalized learning rate	4.42	3.28	2.32	7.52	4.39	0.2902
(g) + Pixelwise normalization	4.06	3.04	2.02	5.13	3.56	0.2845
(h) Converged	2.42	2.17	2.24	4.99	2.96	0.2828

Maintaining a relatively large batch size tends to be very important for GANs (e.g. BigGAN, ProGAN):

- Large memory systems will certainly help here
- Working towards 1st 3D large-resolution generation
- ProGAN 2D model 46M parameters

Medical image synthesis: 2D large image generation

Which ones are fakes?

Fake Chest XRays

Real Chest XRays

Medical image synthesis: 2D large image generation using Progressive growing of GANs

StyleGAN/ProGAN – memory/compute requirements

Resolution		2D	3D		
	Batch size	Memory usage (GB)	Batch size	Memory usage (GB)	
$8^2/8^3$	32	2.7	64	2.7	
$16^2 / 16^3$	32	3.1	32	4.4	
$32^2 / 32^3$	32	4.3	16	8.6	
$64^2/64^3$	32	6.4	8	16.8	
$128^2 / 128^3$	16	6.7	4	33.4	
$256^2 / 256^3$	8	6.6	2	66.2	
$512^2 / 512^3$	8	9.7	1	131.2	
$1024^2 / 1024^3$	8	17.5	-	-	
$2048^2 / 2048^3$	4	23.1	-	-	
$4096^2 / 4096^3$	4	31.5	<u></u>	-	
$8192^2 / 8192^3$	2	109.6	-	-	

Batch size, memory consumption and throughput at different resolutions for the 2D and 3D progressive GAN. All results are using a single compute node.

Conclusions

- Medical imaging typically deal with large-scale data (either 2D or 3D)
 - This puts large pressure on memory subsystems
- Models become more accurate if enlarged
 - Our large-scale parallel-trained AI radiologist achieves superior performance
- Our histopathology models are more accurate if we use larger patches
- Intel[®] Optane Data Center Persistent Memory can enable large-scale models (using large-scale data):
 - 2D histopathology models
 - 3D generative models

Thank you! Questions?