

Multi-scale, patient-specific modelling approaches to predict neointimal hyperplasia growth in femoro-popliteal bypass grafts

Dr Mirko Bonfanti¹, Dr Francesca Donadoni¹, Dr Cesar Pichardo-Almarza¹, Prof Alan Dardik², Prof Shervanthi Homer-Vanniasinkam¹, Prof Vanessa Díaz-Zuccarini¹

1. University College London, UK; 2. Yale University School of Medicine, New Haven, USA;

* The problem

- Peripheral bypass (femoro-popliteal, femoro-distal)
- High failure rate of bypass grafts
- Major clinical problem still not fully resolved

Â

The problem

- Peripheral bypass (femoro-popliteal, femoro-distal)
- High failure rate of bypass grafts
- Major clinical problem still not fully resolved
- * Neointimal hyperplasia (NIH)
 - Main process leading to restenosis
 - After vein-graft creation, the vein undergoes a dramatic remodelling
 - Smooth muscle cells (SMCs) proliferate in the media layer and migrate into the intima, leading to intimal thickening

Objective

To calculate NIH growth and predict occlusion in (*patient-specific*) vein-grafts in humans using a multi-scale, mechanistic computational framework

Why?

- Grafts in animal models exhibit better patency than in humans, animal models have failed
- Mechanistic models help understanding mechanisms quantitatively
- Add further levels of analysis to NIH
- Potential to test hypotheses in a short time, for instance testing different surgical approaches

- Doppler ultrasound scans immediately after surgery
- Geometry extracted from CT-scans (Simpleware, Synopsys, US), NIH virtually removed to obtain post-intervention conditions

2 Computational fluid dynamic (CFD) simulation

- Haemodynamic simulation (CFX, ANSYS, US) to calculate mechanical stimuli (wall-shear stress)
- Patient-specific boundary conditions (BCs): inlet flow wave from Doppler ultrasound, Windkessel BCs at outlets

- NIH growth modelled using ODEs (MATLAB, MathWorks, US)
- Growth factors degradation and SMCs migration, apoptosis and proliferation affected by Nitric Oxide (NO)
- **NO production rate** as a function of the Wall-Shear Stress (**WSS**)

5

Compari

son with

patient's

data

4

growth

 G_P in Ω_i

- WSS-index distribution from CFD simulation as input to the cell model:
 - \rightarrow Time-averaged wall shear stress (TAWSS)
 - \rightarrow or highly oscillatory, low-magnitude shear (HOLMES)

- WSS-index distribution from CFD simulation as input to the cell model:
 - \rightarrow Time-averaged wall shear stress (TAWSS)
 - \rightarrow or highly oscillatory, low-magnitude shear (HOLMES)
- Months of NIH growth simulated in the 3D domain

5 Model validation – comparison against *in vivo* data

- Comparison of the NIH growth model predictions against CT scans
- Identification of the locations most prone to NIH and measurement of the lumen occlusion percentage, both in the *in silico* model and *in vivo* images

Findings

- Wall Shear Stress alone is an unreliable predictor of graft failure/NIH growth
- A combined index, taking into account **wall shear stress** and **oscillations** captures locations much better
- Surrogate haemodynamic indices or morphometric indices alone provide poor metrics to predict graft failure

Donadoni et al . 2019. bioRxiv 624312; doi: https://doi.org/10.1101/624312

The Advantages

- Interpretation is strong and firmly rooted in vascular biology
- It captures complex behaviour and the models are able to offer a mechanistic explanation and are validated against *in vivo* data.
- The mechanistic model allows us to test research hypotheses

The compliance mismatch at the anastomoses is believed to lead to NIH due to alterations of the local haemodynamics

Can we test this hypothesis?

The limitations

- Better quantification methods are necessary. Despite numbers, it remains fairly qualitative
- There are limitations with the biomechanical and cellular models (and imaging data) about the socalled 'patient-specific' parameters/data. Uncertainty is important.
- Time consuming...
- Needs significant validation in a patient cohort

Methods: compliance mismatch in the CFD model

- Three scenarios were simulated:
 - → Rigid (R), Post-operative & Non-arterialised (PO-NA), Post-operative & Arterialised (PO-A)
- ¹ Bonfanti et al. Med. Eng. Phys. 2018; 58:72-79
- ² Donadoni et al. Med. Eng. Phys. doi.org/10.1016/j.medengphy.2019. 09.011

Results: compliance mismatch in the CFD model

- Negligible effect on TAWSS and OSI distributions at the location of the proximal and distal anastomosis
- Slight difference in HOLMES values at the anastomosis

PATIENT 1 – Comparison between Rigid and PO-A cases

血

- Our initial findings showed only a **small effect** of compliance mismatch on the simulated occlusion
 - → Haemodynamic changes due to the compliance mismatch may have a small impact on NIH development

- A promising multiscale, multifactorial approach has been proposed
- **The computational framework** takes into account cell behaviour and integrates information from the state-of-the-art
- The approach offers mechanistic explanations with strong interpretability and physical meaning
- Our preliminary data shows an improvement when compared to standard methods
- We must carefully consider what kind of **surrogate metrics** we are using to understand complex biological phenomena

Thank you

European Commission

EPSRC

Engineering and Physical Sciences Research Council

Prof Alan Dardik

Prof Vanessa Diaz

