Quantum computing

using continuous-time evolution

Viv Kendon

Nick Chancellor (Durham) (UKRI Innovation Fellow) Jie Chen (Durham) *PhD students:* James Morley (UCL) Adam Callison (Imperial) Laur Nita (Durham) Jemma Bennett (Durham) Stephanie Foulds (from Oct) + many UG project students

JQC & QLM Physics Dept Durham University viv.kendon@durham.ac.uk

Scin Compl

CompBioMed: Quantum AI – Virtual Human

London – 25th September 2019

Tech

Group:

Funding: EPSRC Fellowship in Quantum Technologies

.

GOAL: increase computing power . . .

★ current computers already very powerful
 – two barriers to more computing power:

- 1. silicon chip technology reaching limits
- energy consumption far from optimal:
 resource limits; global warming

[lots of room to improve on energy consumption– see, e.g., SpiNNaker project for other ways to use Si]

note these are related: can't cool Si chips any faster

beyond silicon . . .

quantum: IBM 5 qubit

rat neuron on silicon

BZ reaction chemical

reservoir computer

encoding for DNA computer

★ future computing is diversifying ★ ⇒ need to co-design algorithms with hardware ←

hybrid computers . . .

practice: co-processors:

unconventional: control + substrate:

conventional:

- graphics cards
- ASIC application-specific integrated circuit
- FPGA field-programmable gate array

 \star hybrid computational systems are the norm \star

theory: single paradigm:

- classical Turing Machine
- analog Shannon's GPAC
- quantum gate model, QTM, CV . . .
- linear optics (Bosons) [Aaronson/Arkhipov STOC 2011 ECCC TRI-10 170]

• NMR

quantum

slime mould

computing

article: "When does a physical system compute? Proc. Roy. Soc. A 2014 **470**, 20140182 http://dx.doi.org/10.1098/rspa.2014.0182 (Horsman/Stepney/Wagner/VK)

quantum computing

$$\underbrace{\mathsf{input}}_{\longrightarrow} \mathsf{encode} \longrightarrow |\psi_{in}\rangle \longrightarrow \hat{U} \longrightarrow |\psi_{out}\rangle \longrightarrow \mathsf{decode} \longrightarrow \mathsf{result}$$

 \hat{U} is unitary evolution (or more generally, open system/environment) – can be gate sequence, or engineer Hamiltonian $\hat{H}(t)$ such that

$$|\psi_{out}\rangle = \mathcal{T} \exp\{-i/\hbar \int dt \ \hat{H}(t)\} |\psi_{in}\rangle$$

 \star covers most of quantum information processing . . .

. . . including communications, where aim is *result=input*

encode – arbitrary choices:

using spin-down $|\downarrow\rangle \equiv 0$ instead of spin-up $|\uparrow\rangle \equiv 0$ makes no difference \rightarrow provided encode and decode done consistently

quantum information processing

Quantum Information is built on the idea that:

Quantum Logic allows greater efficiency than Classical Logic

classical	quantum
bits, 0 or 1	qubits, $\alpha 0\rangle + \beta 1\rangle$
yes or no, binary decisions	yes and no, superpositions
HEADS or TAILS, random numbers	random measurement outcomes

 \Rightarrow quantum gives different computation from classical: how different?

- **computability** what can be computed?
- **complexity** how efficiently can it be computed?

⇒ quantum computability is the same as classical complexity differs: some problems can be computed more EFFICIENTLY

encoding matters . . .

. . . it determines the physical resources required:

Number	Unary	Binary	
0		0	Read out:
1	•	1	Unary: measurements with N
2	••	10	outcomes
3	• • •	11	Binary: $\log_2 N$ measurements
4	• • ••	100	with 2 outcomes each
•••			\longrightarrow exponentially better for precision
2x4	• • ••	1000	[Ekert & Jozsa PTRSA 356 1769-82 (1998)]
=8	• • ••		\rightarrow exponential reduction in memory
			[does not have to be binary: Blume-Kohout, Caves,
•••	•••	•••	I. Deutsch, Found. Phys. 32 1641-1670 (2002)]
N	N imes ullet	$\log_2 N$ bits	

★ floating point: 0.1234567×10^{89} even more efficient, trade precision/memory ★

gate model quantum computing

the standard introduction . . .

qubits: 2-state quantum systems: examples: electron spin, photon polarisation

localised: distinguishable – no Fermi or Bose statistics to worry about

choose a basis: $|0\rangle$ and $|1\rangle$ from which superpositions $\alpha |0\rangle + \beta |1\rangle$

apply gates: universal sets, e.g., Hadamard + CNOT + T

add error correction . . .

BUT . . .

why do we expect quantum computing to be like digital classical computing?

. . when we have a diverse range of models under development?

bits are either zero or one – *flip between the two values*

qubits can be any superposition: $\alpha |0\rangle + \beta |1\rangle$

- can change smoothly from zero to one or anything in between

\star hence \star

discrete gates make sense for **bits**: *bit-flip is all you can do*

for **qubits**: exact bit-flip is just as hard as other rotations

continuous-time evolution makes sense for **qubits**

+ this is related to work on foundations by Lucien Hardy (2001) "Quantum theory from five reasonable axioms." $ar_{\chi}iv$: quant-ph/0101012

continuous-time quantum computing

 \rightarrow take a closer look at what is in the continuous-time corner . . .

encoding problems into qubit Hamiltonians

+ computational basis state $|j\rangle = |q_0q_1 \dots q_k \dots q_{n-1}\rangle$ with $q_k \in \{0, 1\}$ + superposition of all basis states:

$$|\psi_0\rangle = 2^{-n/2} \sum_{j=0}^{2^n - 1} |j\rangle = \left(\frac{|0\rangle + |1\rangle}{\sqrt{2}}\right)^{\otimes n}$$

encode problem into *n*-qubit Hamiltonian \hat{H}_p

such that <u>solution</u> is lowest energy state (ground state)

example: find state $|m\rangle$ then $\hat{H}_p = \mathbf{1} - |m\rangle \langle m|$

example: three qubits, exactly one must be $|1\rangle$

$$\hat{H}_p = (\mathbf{1} - \hat{Z}_1 - \hat{Z}_2 - \hat{Z}_3)^2$$

Pauli-Z operator: $\hat{Z} |0\rangle = |0\rangle$ and $\hat{Z} |1\rangle = -|1\rangle$

given \hat{H}_p

adiabatic quantum computing

[Farhi et al, quant-ph/0001106]

initialise in ground state $|\psi_{init}\rangle$ of simpler Hamiltonian \hat{H}_0 – easy to prepare –

transform adiabatically:

$$\hat{H}(t) = [1 - s(t)]\hat{H}_0 + s(t)\hat{H}_p$$

with annealing parameter s(t = 0) = 0 and $s(t = t_f) = 1$

s(t) monotonically increasing, function of size of problem space $N = 2^n$ and the *accuracy parameter* ϵ determined by adiabatic condition,

$$\frac{\left|\left\langle \frac{d\hat{H}}{dt} \right\rangle_{1,0}\right|}{(E_1 - E_0)^2} \equiv \epsilon \ll 1,$$
(1)

0 and 1 refer to the ground and excited states, and $\left|\left\langle \frac{d\hat{H}}{dt}\right\rangle_{1,0}\right| \equiv \langle E_1 | \frac{d\hat{H}}{dt} | E_0 \rangle$

closer ϵ is to zero – the more completely the system will stay in the ground state and the longer the computation will take

encoded hypercubes for quantum walks

n qubits encode 2^n vertices:

for a hypercube graph,
$$\hat{H}_h = \gamma \left(n \mathbb{1} - \sum_j \hat{X}_j \right)$$

where *j* is the qubit label: $j = 0 \dots n - 1$

Pauli-X operator \hat{X}_j bit-flips qubit $j \qquad 0 \leftrightarrow 1$

 \rightarrow this moves the position of the quantum walker along an edge of the hypercube

continuous-time quantum search

find the marked state: the problem Hamiltonian

$$\hat{H}_p = \hat{H}_m = \mathbf{1} - |m\rangle \langle m|$$

- makes $|m\rangle$ lower energy – \bigstar use the hypercube Hamiltonian \hat{H}_h for the easy Hamiltonian/initial state - ground state is superposition over all states $|\psi(t=0)\rangle = \{(|0\rangle + |1\rangle)/\sqrt{2}\}^{\otimes n}$ in Pauli operators:

$$\hat{H}_m = \mathbf{1} - \frac{1}{2^n} \prod_{j=1}^n (\mathbf{1} + q_j \hat{Z}_j),$$

where $q_j \in \{-1, 1\}$ defines bitstring corresponding to m for $-1 \equiv 0$ to convert to bits; for gadgets to implement this:

Dodds/VK/Adams/Chancellor ar_Xiv:1812.07885

$$\hat{H}(t) = \mathbf{A}(t)\hat{H}_h + \mathbf{B}(t)\hat{H}_m$$

apply time-evolution

$$\left|\psi(t_f)\right\rangle = \mathcal{T} \exp\{-i \int dt \ \hat{H}(t)\} \left|\psi(t=0)\right\rangle$$

measure after suitable time $t_f \propto \sqrt{N}$ to obtain quantum speed up

University QUANTUM

hybrid continuous-time quantum search algorithms

interpolate between QW ($\alpha = 0$) and AQC ($\alpha = 1$) $\hat{H}(\alpha,t) = A(\alpha,t)\hat{H}_h + B(\alpha,t)\hat{H}_m$ $\hat{H}_{OW} = \gamma \hat{H}_h + \hat{H}_m$ $\hat{H}_{AOC} = [1 - s(t)]\hat{H}_h + s(t)\hat{H}_m$ \rightarrow need γ and s(t) . . .

[James Morley's work (UCL CDT) PRA 99, 022339 (2019) ar_{χ} iv:1709.00371]

more realistic problems

Sherrington Kirkpatrick spin glasses: frustrated spin systems
 ★ NP-hard for finding ground state *i.e., expect polynomial speed up* ★ more like realistic hard optimisation problems

$$\hat{H}_p = -\sum_{j=0}^{n=1} \sum_{k=j+1}^{n-1} \frac{J_{jk} + J_{kj}}{2} \hat{Z}_j \hat{Z}_k - \sum_{j=0}^{n=1} h_j \hat{Z}_j$$

 J_{jk} , h_j drawn from Gaussian distributions with mean = 0 (hardest)

• AQC can find ground states faster than guessing

[e.g., Martin-Mayor/Hen Sci Rep 5, 15324 (2015); arXiv:1502.02494]

$$\hat{H}(t) = (1-s(t))\hat{H}_w + s(t)\hat{H}_p$$

• what about continuous-time quantum walks?

$$\hat{H}(t) = \gamma \hat{H}_w + \hat{H}_p$$

• compare with a random energy model (REM)

SK spin glass results

hybrid algorithms do even better...

don't need to solve problem to set parameters, heuristic does well

 $P \sim N^{-0.41}$ for short run times [Callison/Chancellor/Mintert/VK ar_{χ}iv:1903.05003]

cf P ~ $N^{-0.5}$ for search, i.e., \bigstar better than search \bigstar

continuous-time quantum computing

family of computational models:

- discrete qubits for efficient encoding
- **continuous time** evolution with engineered Hamiltonian
- coupling to low temp bath open system effects
 cooling

 \rightarrow makes sense because **qubits** do superposition; classical **bits** don't

exploits natural properties of quantum systems

quantum annealing

– a noisy version of adiabatic quantum computing – run faster than adiabatic –

low temperature bath helps remove energy to reach ground state solution . . .

.

. . . **but** may also **kill helpful coherences** in the process

[in literature, AQC and Qanneal used interchangeably \rightarrow confusion]

scaling and limitations

scaling: more qubits requires more precise Hamiltonian parameters – evidence from D-Wave that they are reaching that limit at 2000 qubits

- this is still way more than classical computers can simulate
- limit could be higher for other hardware
- use as quantum co-processors for bottleneck subroutines
- hybrid algorithms, e.g., Chancellor NJP 19, 2, 023024 (2017) & ar_Xiv:1609.05875

error correction: standard digital methods don't apply;
+ quantum codes can provide robustness (e.g., Lidar PRL 100 160506 2008)
+ NMR and other quantum control techniques also help

UK Quantum Computing landscape

- 2014: £270M over five years, four Hubs: imaging, metrology, communications, computing
- 2019: £80M Hub renewal + £200M+ innovation funding
 + National Quantum Computing Centre (NQCC) (~ £80M)

Global context:

EU Flagship on Quantum Technology + big national investments:
 ★ partnerships with foundaries (e.g., Intel/Delft)
 → US: NSF already funded testbeds like NQCC aims to develop

- major companies investing in hardware+software (IBM, Google, Microsoft ...)
- many new hardware and software start ups . . .

