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Outline

• Why we care about uncertainty in cardiac 
models.

• Approaches to sensitivity and uncertainty 
analysis.

• Worked example with a cardiac cell model.



Electrical activity in the heart

300-400 ms150-200 
msFigure from Bers. Nature 2002;415:198

• The heart is an electromechanical pump.
• Electrical excitation initiates and synchronises contraction



Clinical translation
A possible use case for cardiac models:
• Atrial fibrillation (AF) is a common arrhythmia, and can be abolished by RF 

ablation.
• But ~40% of patients who have RF ablation require an additional procedure for 

atrial tachycardia, which is expensive and bad for the patient.
• Can we use patient-specific models of electrical activation to:

– identify additional ablation sites?
– Identify additional ablation sites in-procedure?
– Given noisy and low resolution, and measurements of electrical activation 

that are sparse and noisy.

Addressing this use case requires us to understand how our confidence in model 
predictions depends on uncertainty and variability in model inputs (parameters, 
geometry, numerics).



Sensitivity and uncertainty  analysis

Uncertainty analysis – quantify uncertainties in model outputs 
arising from uncertain model inputs.
• Estimate confidence in model output given uncertain inputs.
• May enable probabilistic workflows.

Sensitivity analysis – quantify how model outputs depend on 
each input (parameter) and their interactions.
• Insights into model itself.
• Identify model inputs that need to be controlled or measured 

precisely.
• Quantify effect of uncertainty and variability in model inputs.



Worked example
Concentrate on model of the action potential.

• Set of ODEs, each ODE represents magnitude and kinetics of current 
through the membrane.

• Current carried by Na+, Ca2+, and K+ through ion channels, pumps and 
exchangers.

• ODEs calibrated against experimental data.

Sensitivity analysis – How do current magnitudes and boundary conditions 
affect the simulated action potential?

Uncertainty analysis – How do uncertain current magnitudes affect 
uncertainty in the action potential?



A cardiac cell model (CRN)
Minimal list of 20 model 
parameters:
• 9 ion channel maximal 

conductances,
• 3 pump exchanger maxima,
• 4 external boundary 

conditions (Cm, [Na+]o, [K+]o,  
[Ca2+]o).

• 4 Ca2+ handling parameters.
• Kinetic parameters not 

included.
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Curse of dimensionality
For a cardiac cell model, the number of model parameters (inputs) 
is at least O(10), sometimes O(100).
• To sample 1-D input space on [0 .. 1] evenly with spacing 0.5 

requires 31 model evaluations.
• For 2-D input space, we require 32 evaluations.
• For N-D input space, we require 3N evaluations.
The CRN model has 20 minimal inputs, so comprehensive sampling 
requires 320 evaluations.
Even sampling lower and upper limits requires 220 evaluations (12 
days).

3.4 x 109 (110 yr @1s per run)



Model description

Mathematical or 
computational 

model

Inputs

x1
x2
.
.
xn

Output(s)
y1
y2
.
.
yn

y = f(x)
• Sample x from a distribution, and evaluate y for 

each sample
• Replace y = f(x) with an emulator y ≈ f’(x) 



Gaussian process emulators
A Gaussian process (GP) is a statistical model that is a distribution 
over functions.
It effectively interpolates an output surface y = f’(x).
A GP can be used to calculate expected output E[f’(x’)] (and its 
variance Var[f’(x’)]), for any input vector x’.
• The GP is trained using a set of design data y = f(x).
• No assumptions except that f(x) is smooth (-ish).
• Evaluating the emulator is fast, so can explore input space 

thoroughly.
• Any input can be uncertain, so x’ can have a variance.
• If inputs and outputs are normally distributed, then we can 

calculate distributions on outputs directly.



GP training and validation
Design data for training the emulators:
• Separate emulator for each output.
• Code auto-generated from CellML.
• 300 model runs (10 x number of inputs is rule of thumb).
• Each input varied from 0.5 x to 1.5 x default (±50%), except GK1 and Cm (±25%), and 

ion concentrations (±10%).
• Model runs with pacemaking, APD>500 ms, APD alternans, or other problems 

removed (5/300).
Validation against 150 additional runs using mean average percentage error, <10%.
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Sensitivity indices
First order index – expectation of the reduction in output 
variance if we learn input xi exactly:

Total effect index – reduction in output variance if we know 
every input except xi (x~i) exactly:

These are enough to understand both sensitivity at first 
order, and interactions.

𝑆! =
𝑉𝑎𝑟∗ 𝒚 − 𝐸[𝑉𝑎𝑟∗ 𝒚 𝑥! ]

𝑉𝑎𝑟∗[𝒚]
=
𝑉𝑎𝑟∗[𝐸 𝒚 𝑥! ]

𝑉𝑎𝑟∗[𝒚]

𝑆#! =
𝑉𝑎𝑟∗[𝒚] − 𝑉𝑎𝑟∗[𝐸(𝒚|𝑥~!)]

𝑉𝑎𝑟∗[𝒚]

Saltelli, Chan, Scott, 2000, Oakley and O’Hagan 2004



First order indices – CRN model
• Variance based sensitivity indices: proportion of output variance accounted for by 

each uncertain input – directly calculated from GP emulators.
• Inputs set to default value, with standard deviation of 0.2 in normalized units.
• Sign from slope of main effect around default value.



Total effect indices – CRN model
• Numbers on right are sum of differences between first order index and total 

effect index – indication of interactions.
• Most differences <0.05 – effect of interactions is small.



Uncertainty analysis for APD90
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Concluding remarks
• As modellers, we must account for uncertainty and variability more carefully 

than we do at the moment – single model runs for a single set of parameters 
are not good enough.

• GPs are effective, but other tools exist and it is not yet clear what approaches 
work best.

• Variability and uncertainty in Physiome models is interesting, topical, difficult, 
and absolutely crucial for models that will have credibility.

• Challenges include:
– Non-uniqueness and identifiability – different combinations of parameters can produce 

identical action potentials.
– Incorporating dynamic behaviour into analysis.

– Extending to propagation in tissue.

• Want to have a go with GPs? Download our Python implementation from 
https://github.com/samcoveney/maGPy

https://github.com/samcoveney/maGPy


Thanks for listening



Ongoing work
Model analysis and comparison:
• GPs enable sensitivity of different models to the same inputs to be compared.
• Investigate mechanisms of variability, compare to real cardiac cells.

Model calibration:
• Evaluating a GP is very fast – ~106 emulator evaluations in ~20 mins on single 

core, i.e. ~103 per second. Model evaluation takes ~10 s, so 104 speedup.
• Enables model calibration using history matching – see 

https://doi.org/10.1016/j.pbiomolbio.2018.08.001

Challenges:
• Non-uniqueness – different combinations of parameters can produce identical 

action potentials.
• Incorporating dynamic behaviour into analysis – variable diastolic interval as 

another input.

https://doi.org/10.1016/j.pbiomolbio.2018.08.001


GP emulators - 2
Emulator

𝑓′(𝒙′) = ℎ(𝒙′)!𝛽 + 𝑐(𝒙", 𝒙)

Vector of 
inputs

Mean 
function

Covariance 
function



Hyperparameters
ℎ(𝒙′)# 𝛽 = 𝛽% + 𝛽&𝑥& + 𝛽'𝑥' + …+ 𝛽(𝑥(

𝑐 𝒙), 𝒙 = 𝜎' 𝑒𝑥𝑝 −:
*+&

(
𝑥*) − 𝑥*
𝛿*

'

• Hyperparameters can be optimised using a set of design 
data – a set of simulator input and output data.

• Maximise log-likelihood of hyperparameters given design 
data – Bayesian trick.

• Posterior mean and variance of emulator are then 
conditional on design data – Chang et al PloS ONE 2015
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Simple example
10 samples from a GP.
Here x and x’ random 
numbers, mean is zero.

• σ2 – how far f(x) deviates 
from mean.

• δ – length-scale 
(wiggliness) of f(x).

σ2 = 1.0, δ = 0.5
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σ2 = 1.0, δ = 0.1

10 samples from a GP.
Here x and x’ random 
numbers, mean is zero.

• σ2 – how far f(x) deviates 
from mean.

• δ – length-scale 
(wiggliness) of f(x).

Simple example
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GP hyperparameters have 
been fitted using design 
data y1 = f(x1) – red points.

Process gives maximum 
likelihood of GP 
hyperparameters given 
design data

Simple example
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Gaussian process

GP can then provide 
estimates of y2 = f(x2) given 
the design data.
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Gaussian process

GP fitting takes place in 
Bayesian setting, so we can 
update GP parameters with 
extra data.
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Gaussian process

For any value of x, we can 
directly calculate the 
expected output y, and its 
variance.



Gaussian process
We can also treat x as 
uncertain, with an 
expectation and variance.

Say x = 0.5, with variance 
of 0.01, 0.02, and 0.04.



Comparison with PLS B-indices
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BPLS obtained by minimising |Y’-Y| where Y’ = XB, X and Y are based on design data, with each 
x and y regularised by subtracting mean and dividing by standard deviation.  

BPLS

Si



SI comparison
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Uncertainty in cardiac models
Sources of uncertainty in cardiac models include:
• Intrinsic variability – within and between cells.
• Measurement uncertainty – in experiments used to construct and 

calibrate models.
• Lack of information/knowledge – some quantities are impossible to 

measure.
• Parameter uncertainty – models calibrated from variable and uncertain 

data.
• Condition uncertainty – in initial and boundary conditions.
• Geometry uncertainty – in a computational mesh.

Useful models must strike a balance between model complexity and model 
uncertainty.

(Mirams et al, J Physiol 2016, Eck et al, Int J Numer Meth Biomed Eng 2015)



Main effects


